1. Zhongping Chen

    0 Comments Leave a Comment

    1-15 of 199 1 2 3 4 ... 12 13 14 »
    1. Mentioned In 199 Articles

    2. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography

      Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
      Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In ...
      Read Full Article
    3. Dynamically focused optical coherence tomography for endoscopic applications

      Dynamically focused optical coherence tomography for endoscopic applications
      We report a demonstration of a small liquid-filled polymer lens that may be used to dynamically provide scanning depth focus for endoscopic optical coherence tomography (OCT) applications. The focal depth of the lens is controlled by changing the hydraulic pressure within the lens, enabling dynamic focal depth control without the need for articulated parts. The 1 mm diameter lens is shown to have resolving power of 5 m, and can ...
      Read Full Article
    4. Ultra-deep imaging of optical coherence tomography in highly scattering media

      Ultra-deep imaging of optical coherence tomography in highly scattering media
      A time-domain optical coherence tomography system based on measuring the reflection matrix of back-scattered light is proposed for extended imaging depth into scattering media. A filtering operation is applied to the reflection matrix to preserve the back-scattered light with near-forward directions while discarding most of the multiple scattered light. A singular value decomposition is then carried out in the filtered matrix for principal component analysis, to remove the residual multi-scattered ...
      Read Full Article
    5. Coagulation monitoring based on blood elastic measurement using optical coherence tomography

      Coagulation monitoring based on blood elastic measurement using optical coherence tomography
      Blood coagulation monitoring is important to diagnose hematological diseases and cardiovascular diseases and to predict the risk of bleeding and excessive clotting. In this study, we developed a system to dynamically monitor blood coagulation and quantitatively determine the coagulation function by blood elastic measurement. When blood forms a clot from a liquid, ultrasonic force induces a shear wave, which is detected by optical coherence tomography (OCT). The coagulation of porcine ...
      Read Full Article
    6. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images

      Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images
      Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also ...
      Read Full Article
    7. Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging

      Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging
      We present a tri-modality imaging system and fully integrated tri-modality probe for intravascular imaging. The tri-modality imaging system is able to simultaneously acquire optical coherence tomography (OCT), ultrasound (US), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. We conducted imaging from a male New Zealand white rabbit to evaluate the performance of the tri-modality system ...
      Read Full Article
    8. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor

      Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor
      The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo , however the limited imaging range has prevented full delineation of the various shapes ...
      Read Full Article
    9. 3D mapping of elastic modulus using shear wave optical micro-elastography

      3D mapping of elastic modulus using shear wave optical micro-elastography
      lastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10m in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the ...
      Read Full Article
    10. Diagnosis of subglottic stenosis in a rabbit model using long-range optical coherence tomography

      Diagnosis of subglottic stenosis in a rabbit model using long-range optical coherence tomography
      Objectives/Hypothesis Current imaging modalities lack the necessary resolution to diagnose subglottic stenosis. The aim of this study was to use optical coherence tomography (OCT) to evaluate nascent subglottic mucosal injury and characterize mucosal thickness and structural changes using texture analysis in a simulated intubation rabbit model. Study Design Prospective animal study in rabbits. Methods Three-centimeter-long sections of endotracheal tubes (ETT) were endoscopically placed in the subglottis and proximal trachea ...
      Read Full Article
    11. Apparatus and method for capturing a vital vascular fingerprint

      Apparatus and method for capturing a vital vascular fingerprint
      A method using optical coherence tomography to capture the microvascular network of the superficial layer of the finger skin for the purpose of fingerprint authentication and liveness detection. At the dermal papilla region, the vascular pattern follows the same pattern of the fingerprint and this vascular pattern forms a live vascular fingerprint. This live vascular fingerprint provides for ultrahigh security and a unique way for fingerprint-based personal verification. Because the ...
      Read Full Article
    12. Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography

      Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography
      Objectives: To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods: Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal ...
      Read Full Article
    13. University of California at Irvine Receives NIH Grant for Phased Resolved ARF optical Coherence Elastography for Intravascular Imaging

      University of California at Irvine Receives NIH Grant for Phased Resolved ARF optical Coherence Elastography for Intravascular Imaging
      University of California at Irvine Receives a 2016 NIH Grant for $721,594 for Phased Resolved ARF optical Coherence Elastography for Intravascular Imaging. The principal investigatoor is Zhonping Chen. The program began in 2014 and ends in 2018. Below is a summary of the proposed work. The broad, long term objective of the proposed grant is to develop an integrated multimodal intravascular imaging system that combines intravascular optical coherence tomography ...
      Read Full Article
    14. 1-15 of 199 1 2 3 4 ... 12 13 14 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Zhongping Chen

    Zhongping Chen

    Zhongping Chen is a Professor of Biomedical Engineering and Director of the F-OCT Laboratory at the University of California, Irvine. He is a Co-founder and Chairman of OCT Medical Imaging Inc. Dr. Chen received his B.S. degree in Applied Physics from Shanghai Jiao Tong University in 1982, his M.S. degree in Electrical Engineering in 1987, and his Ph.D. degree in Applied Physics from Cornell University in 1993. Dr. Chen’s research interests encompass the areas of biomedical photonics, microfabrication, biomaterials and biosensors. His research group has pioneered the development of functional optical coherence tomography, which simultaneously provides high resolution 3-D images of tissue structure, blood flow, and birefringence. These functional extensions of OCT offer contrast enhancements and provide mapping of many clinically important parameters. In addition, his group has developed a number of endoscopic and intravascular rotational and linear 2-D probes for OCT and MPM imaging and translated these technologies to clinical applications through collaboration with clinicians. He has led numerous major research projects funded by NIH, NSF, DOD, and DARPA, including several interdisciplinary research projects such as the NIH Biomedical Research Partnership (BRP) grant and NSF Biophotonics Partnership Initiative grant. Dr. Chen has published more than 200 peer-reviewed papers and review articles and holds a number of patents in the fields of biomaterials, biosensors, and biomedical imaging. Dr. Chen is a Fellow of the American Institute of Medical and Biological Engineering (AIMBE), a Fellow of SPIE, and a Fellow of the Optical Society of America.