1. University of Rochester

    0 Comments Leave a Comment

    1-15 of 99 1 2 3 4 5 6 7 »
    1. Mentioned In 99 Articles

    2. Measurement of the lipid and aqueous layers of a tear film

      Measurement of the lipid and aqueous layers of a tear film
      Systems and methods for determining thickness of lipid and aqueous layers of a tear film in which a spectrum array is generated from optical coherence tomography and input into a statistical estimator, which determines the thickness of the lipid and/or aqueous layers at a nanometer resolution based on the inputted spectrum and other information, such as information about a laser intensity noise, Poisson noise, and dark noise associated with ...
      Read Full Article
    3. Comparative study of shear wave-based elastography techniques in optical coherence tomography

      Comparative study of shear wave-based elastography techniques in optical coherence tomography
      We compare five optical coherence elastography techniques able to estimate the shear speed of waves generated by one and two sources of excitation. The first two techniques make use of one piezoelectric actuator in order to produce a continuous shear wave propagation or a tone-burst propagation (TBP) of 400 Hz over a gelatin tissue-mimicking phantom. The remaining techniques utilize a second actuator located on the opposite side of the region ...
      Read Full Article
    4. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors

      In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors
      The light responses of rod and cone photoreceptors have been studied electrophysiologically for decades, largely with ex vivo approaches that disrupt the photoreceptors subretinal microenvironment. Here we report the use of optical coherence tomography (OCT) to measure light-driven signals of rod photoreceptors in vivo. Visible light stimulation over a 200-fold intensity range caused correlated rod outer segment (OS) elongation and increased light scattering in wild-type mice, but not in mice ...
      Read Full Article
    5. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

      3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology
      Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between ...
      Read Full Article
    6. Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]

      Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]
      Histological studies have shown that morphometric changes at the microscopic level of choriocapillaris (CC) occur with aging and disease onset, and therefore may be sensitive biomarkers of outer retinal health. However, visualizing CC at this level in the living human eye is challenging because its microvascular is tightly interconnected and weakly reflecting. In this study, we address these challenges by developing and validating a method based on adaptive optics optical ...
      Read Full Article
    7. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography

      Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography
      Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is difficult to detect the subsurface lesions. In this research, we investigated the feasibility of a novel multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and ...
      Read Full Article
    8. Examination of Gland Dropout Detected on Infrared Meibography by Using Optical Coherence Tomography Meibography

      Examination of Gland Dropout Detected on Infrared Meibography by Using Optical Coherence Tomography Meibography
      Purpose To elucidate the anatomic details of gland dropout detected on two-dimensional infrared (IR) meibography in cases of dry eye associated with meibomian gland dysfunction (MGD) by using three-dimensional optical coherence tomography (OCT) meibography. Methods In this cross-sectional, observational case series, we enrolled gland dropout detected on IR meibography; the condition was then examined using a real-time swept-source OCT system. Accordingly, a series of 500 raster B-scan OCT images, with ...
      Read Full Article
    9. Optical Assessment of Soft Contact Lens Edge-Thickness

      Optical Assessment of Soft Contact Lens Edge-Thickness
      Purpose: To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-m imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods: A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in ...
      Read Full Article
    10. Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system

      Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system
      In this paper, we develop the methodology, including the refraction correction, geometrical thickness correction, coordinate transformation, and layer segmentation algorithms, for 3D rendering and metrology of a layered spherical gradient refractive index (S-GRIN) lens based on the imaging data collected by an angular scan optical coherence tomography (OCT) system. The 3D mapping and rendering enables direct 3D visualization and internal defect inspection of the lens. The metrology provides assessment of ...
      Read Full Article
    11. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy

      MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy
      High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals ...
      Read Full Article
    12. In vivo thickness dynamics measurement of tear film lipid and aqueous layers with optical coherence tomography and maximum-likelihood estimation

      In vivo thickness dynamics measurement of tear film lipid and aqueous layers with optical coherence tomography and maximum-likelihood estimation
      Dry eye disease (DED) is a common ophthalmic condition that is characterized by tear film instability and leads to ocular surface discomfort and visual disturbance. Advancements in the understanding and management of this condition have been limited by our ability to study the tear film secondary to its thin structure and dynamic nature. Here, we report a technique to simultaneously estimate the thickness of both the lipid and aqueous layers ...
      Read Full Article
    13. Experimental classification of surface waves in optical coherence elastography

      Experimental classification of surface waves in optical coherence elastography
      Various types of waves are produced when a harmonic force is applied to a semi-infinite half space elastic medium. In particular, surface waves are perturbations with transverse and longitudinal components of displacement that propagate in the boundary region at the surface of the elastic solid. Shear wave speed estimation is the standard for characterizing elastic properties of tissue in elastography; however, the penetration depth of Optical Coherence Tomography (OCT) is ...
      Read Full Article
    14. Spectral fusing Gabor domain optical coherence microscopy

      Spectral fusing Gabor domain optical coherence microscopy
      Gabor domain optical coherence microscopy (GD-OCM) is one of many variations of optical coherence tomography (OCT) techniques that aims for invariant high resolution across a 3D field of view by utilizing the ability to dynamically refocus the imaging optics in the sample arm. GD-OCM acquires multiple cross-sectional images at different focus positions of the objective lens, and then fuses them to obtain an invariant high-resolution 3D image of the sample ...
      Read Full Article
    15. Crawling wave optical coherence elastography

      Crawling wave optical coherence elastography
      Elastography is a technique that measures and maps the local elastic property of biological tissues. Aiming for detection of micron-scale inclusions, various optical elastography, especially optical coherence elastography (OCE), techniques have been investigated over the past decade. The challenges of current optical elastography methods include the decrease in elastographic resolution as compared with its parent imaging resolution, the detection sensitivity and accuracy, and the cost of the overall system. Here ...
      Read Full Article
    16. Simultaneous estimation of thickness and refractive index of layered gradient refractive index optics using a hybrid confocal-scan swept-source optical coherence tomography system

      Simultaneous estimation of thickness and refractive index of layered gradient refractive index optics using a hybrid confocal-scan swept-source optical coherence tomography system
      A hybrid confocal-scan swept-source optical coherence tomography metrology system was conceived for simultaneous measurements of the refractive index and thickness profiles of polymeric layered gradient refractive index (GRIN) optics. An uncertainty analysis predicts the metrology capability of the system and guides the selection of an optimum working numerical aperture. Experimental results on both a monolithic and a GRIN layered sheet are demonstrated to be in close agreement with theoretical predictions ...
      Read Full Article
    17. 1-15 of 99 1 2 3 4 5 6 7 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About University of Rochester

    University of Rochester

    University of Rochester, founded in 1850, is one of the nation's leading private universities. With just over 4,500 undergraduates, Rochester is one of the smallest and most collegiate in character among the top research universities

    Founded in 1850, UR offers degree programs at the bachelor's, master's, and doctoral levels, as well as in several professional disciplines. Its undergraduate and graduate degree programs in political science, business administration and music are among the best in the nation. The Institute of Optics at the university is also the oldest optics program in the U.S., having granted about half of the optics degrees in the nation.

    UR is a highly research oriented institution, hosting numerous centers of research, including the Laboratory for Laser Energetics, which boasts the most powerful ultraviolet laser in the world, and the University of Rochester Medical Center, featuring numerous biomedical and healthcare research facilities. Since 2005, UR with its affiliated Strong Health System, has been the largest employer in the Greater Rochester area.