1. University of Houston

    0 Comments Leave a Comment

    1-15 of 168 1 2 3 4 ... 10 11 12 »
    1. Mentioned In 168 Articles

    2. The University of Houston Receives NIH Grant for Optical Coherence Tomography to Study Effect of Poly-Drug Exposure on Fetal Brain Development

      The University of Houston Receives NIH Grant for Optical Coherence Tomography to Study Effect of Poly-Drug Exposure on Fetal Brain Development
      ...icular significant impact for the development of novel and innovative therapies for reversing teratology. The University of Houston Receives a 2017 NIH Grant for $311,241 for Optical Coherence Tomography to Study Effect ...
      Read Full Article
    3. Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography

      Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography
      Neural tube closure is a critical feature of central nervous system morphogenesis during embryonic development. Failure of this process leads to neural tube defects, one of the most common forms of human congenital defects. Although molecular and genetic studies in model organisms have provided insights into the genes and proteins that are required for normal neural tube development, complications associated with live imaging of neural tube closure in mammals limit ...
      Read Full Article
    4. Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography

      Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography
      In this work we utilize optical coherence elastography (OCE) to assess the effects of UV-A/riboflavin corneal collagen crosslinking (CXL) on the mechanical anisotropy of in situ porcine corneas at various intraocular pressures (IOP). There was a distinct meridian of increased Youngs modulus in all samples, and the mechanical anisotropy increased as a function of IOP and also after CXL. The presented noncontact OCE technique was able to quantify the ...
      Read Full Article
    5. OCT Expanded Clinical Data Analysis (OCT Aboard Space Station)

      OCT Expanded Clinical Data Analysis (OCT Aboard Space Station)
      Vision changes identified in long duration space fliers has led to a more comprehensive clinical monitoring protocol. Optical Coherence Tomography (OCT) was recently implemented on board the International Space Station in 2013. NASA is collaborating with Heidelberg Engineering to expand our current OCT data analysis capability by implementing a volumetric approach. Volumetric maps will be created by combining the circle scan, the disc block scan, and the radial scan. This ...
      Read Full Article
    6. Optical Modalities for Embryonic Imaging

      Optical Modalities for Embryonic Imaging
      tudies of disease etiology often rely on the murine (mouse) model, which provides valuable genotypic information. Yet associated phenotypic information from murine embryos is often lacking. Of the various techniques that have been proposed for imaging such embryos, optical modalities may provide the best compromise among speed, penetration depth and resolution. This year, we developed approaches to improve embryonic imaging with optical coherence tomography (OCT), 1 and also provided a ...
      Read Full Article
    7. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model

      Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model
      The biomechanical properties of the cornea play a critical role in forming vision. Diseases such as keratoconus can structurally degenerate the cornea causing a pathological loss in visual acuity. UV-A/riboflavin corneal collagen crosslinking (CXL) is a clinically available treatment to stiffen the cornea and restore its healthy shape and function. However, current CXL techniques do not account for pre-existing biomechanical properties of the cornea nor the effects of the ...
      Read Full Article
    8. Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model

      Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model
      This study demonstrates the feasibility of using the Rayleigh wave model (RWM) in combination with optical coherence elastography (OCE) technique to assess the viscoelasticity of soft tissues. Dispersion curves calculated from the spectral decomposition of OCE-measured air-pulse induced elastic waves were used to quantify the viscoelasticity of samples using the RWM. Validation studies were first conducted on 10% gelatin phantoms with different concentrations of oil. The results showed that the ...
      Read Full Article
    9. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography

      Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography
      PURPOSE: To evaluate the elastic anisotropy of porcine corneas at different intraocular pressures (IOPs) using a noncontact optical coherence elastography (OCE) technique. METHODS: A focused air-pulse induced low amplitude ( 10 m) elastic waves in fresh porcine corneas (n = 7) in situ in the whole eye globe configuration. A home-built phase-stabilized swept source optical coherence elastography (PhS-SSOCE) system imaged the elastic wave propagation at different stepped radial directions. A closed-loop feedback ...
      Read Full Article
    10. Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography

      Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography
      Purpose : The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light. Methods : Low-amplitude (10 m) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized ...
      Read Full Article
    11. Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant

      Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant
      Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional ...
      Read Full Article
    12. Optical coherence tomography for embryonic imaging: a review

      Optical coherence tomography for embryonic imaging: a review
      Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during ...
      Read Full Article
    13. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography

      Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography
      We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but ...
      Read Full Article
    14. 1-15 of 168 1 2 3 4 ... 10 11 12 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About University of Houston

    University of Houston

    University of Houston is a public doctoral/research university located in Houston, Texas. It is the flagship institution and the only doctoral degree-granting university in the University of Houston System, which includes three other universities and two multi-institution teaching centers.  Biomedical Optics Laboratory at the University of Houston is located within the Biomedical Engineering and Mechanical Enginnering Department at the University of Houston (UH). The research activities of the laboratory, under the direction of Dr. Kirill Larin, concern the development of new methods for protein biosensing (based on nanooptics) and tissue functional imaging (based on Optical Coherence Tomography).