1. University of Houston

    0 Comments Leave a Comment

    1-15 of 233 1 2 3 4 ... 14 15 16 »
    1. Mentioned In 233 Articles

    2. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: repeatability and reproducibility

      In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: repeatability and reproducibility
      Reliable and quantitative assessment of corneal biomechanics is important for the detection and treatment of corneal disease. The present study evaluates the repeatability and reproducibility of a novel optical coherence tomography (OCT)-based elastography (OCE) method for in vivo quantification of corneal natural frequency in 20 normal human eyes. Sub-micron corneal oscillations were induced by repeated low-force (13 Pa) microliter air pulses at the corneal apex and were observed by ...
      Read Full Article
    3. Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data

      Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data
      Optical Coherence Tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (SS-OCT) images using undersampled spectral data, without any spatial aliasing artifacts. This neural network-based image reconstruction does not require any hardware changes to the optical set- up and can be easily integrated with existing swept-source or ...
      Read Full Article
    4. Heartbeat optical coherence elastography: corneal biomechanics in vivo

      Heartbeat optical coherence elastography: corneal biomechanics in vivo
      Significance: Mechanical assessment of the cornea can provide important structural and functional information regarding its health. Current clinically available tools are limited in their efficacy at measuring corneal mechanical properties. Elastography allows for the direct estimation of mechanical properties of tissues in vivo but is generally performed using external excitation force. Aim: To show that heartbeat optical coherence elastography (Hb-OCE) can be used to assess the mechanical properties of the ...
      Read Full Article
    5. In Vivo Human Corneal Shear-wave Optical Coherence Elastography

      In Vivo Human Corneal Shear-wave Optical Coherence Elastography
      SIGNIFICANCE A novel imaging technology, dynamic optical coherence elastography (OCE), was adapted for clinical noninvasive measurements of corneal biomechanics. PURPOSE Determining corneal biomechanical properties is a long-standing challenge. Elasticity imaging methods have recently been developed and applied for clinical evaluation of soft tissues in cancer detection, atherosclerotic plaque evaluation, surgical guidance, and more. Here, we describe the use of dynamic OCE to characterize mechanical wave propagation in the human cornea ...
      Read Full Article
    6. Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics

      Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics
      We present an air-coupled ultrasonic radiation force probe co-focused with a phase-sensitive optical coherence tomography (OCT) system for quantitative wave-based elastography. A custom-made 1 MHz spherically focused piezoelectric transducer with a concentric 10 mm wide circular opening allowed for confocal micro-excitation of waves and phase-sensitive OCT imaging.
      Read Full Article
    7. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus

      Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus
      Purpose : Currently, the biomechanical properties of the corneo-scleral limbus when the eye-globe deforms are largely unknown. The purpose of this study is to evaluate changes in elasticity of the cornea, sclera, and limbus when subjected to different intraocular pressures (IOP) using wave-based optical coherence elastography (OCE). Special attention was given to the elasticity changes of the limbal region with respect to the elasticity variations in the neighboring corneal and scleral ...
      Read Full Article
    8. Optical coherence tomography angiography to evaluate murine fetal brain vasculature changes caused by prenatal exposure to nicotine

      Optical coherence tomography angiography to evaluate murine fetal brain vasculature changes caused by prenatal exposure to nicotine
      Maternal smoking causes several defects ranging from intrauterine growth restriction to sudden infant death syndrome and spontaneous abortion. While several studies have documented the effects of prenatal nicotine exposure in development and behavior, acute vasculature changes in the fetal brain due to prenatal nicotine exposure have not been evaluated yet. This study uses correlation mapping optical coherence angiography to evaluate changes in fetal brain vasculature flow caused by maternal exposure ...
      Read Full Article
    9. ASSESSING TERATOGEN-INDUCED CHANGES IN MURINE FETAL BRAIN VASCULATURE USING IN UTERO OPTICAL COHERENCE TOMOGRAPHY (Thesis)

      ASSESSING TERATOGEN-INDUCED CHANGES IN MURINE FETAL BRAIN VASCULATURE USING IN UTERO OPTICAL COHERENCE TOMOGRAPHY (Thesis)
      This dissertation reports the use of in utero optical coherence tomography to evaluate changes in vasculature in a developing murine fetal brain caused due to prenatal exposure to teratogens. Embryogenesis is a highly complex process that is extremely vulnerable to external factors. Proper visualization of embryonic development is crucial to understand the basic physiological processes and identify defects if any. This dissertation is divided into two major sections: 1) assessing ...
      Read Full Article
    10. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography

      Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography
      Significance: It is generally agreed that the corneal mechanical properties are strongly linked to many eye diseases and could be used to assess disease progression and response to therapies. Elastography is the most notable method of assessing corneal mechanical properties, but it generally requires some type of external excitation to induce a measurable displacement in the tissue. Aim: We present Heartbeat Optical Coherence Elastography (Hb-OCE), a truly passive method that ...
      Read Full Article
    11. 1-15 of 233 1 2 3 4 ... 14 15 16 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About University of Houston

    University of Houston

    University of Houston is a public doctoral/research university located in Houston, Texas. It is the flagship institution and the only doctoral degree-granting university in the University of Houston System, which includes three other universities and two multi-institution teaching centers.  Biomedical Optics Laboratory at the University of Houston is located within the Biomedical Engineering and Mechanical Enginnering Department at the University of Houston (UH). The research activities of the laboratory, under the direction of Dr. Kirill Larin, concern the development of new methods for protein biosensing (based on nanooptics) and tissue functional imaging (based on Optical Coherence Tomography).