1. UC Davis

    0 Comments Leave a Comment

    1-15 of 118 1 2 3 4 5 6 7 8 »
    1. Mentioned In 118 Articles

    2. Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography

      Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography

      Quantification of chromophore concentrations in reflectance mode remains a major challenge for biomedical optics. Spectroscopic Optical Coherence Tomography (SOCT) provides depth-resolved spectroscopic information necessary for quantitative analysis of chromophores, like hemoglobin, but conventional SOCT analysis methods are applicable only to well-defined specular reflections, which may be absent in highly scattering biological tissue. Here, by fitting of the dynamic scattering signal spectrum in the OCT angiogram using a forward model of light propagation, we quantitatively determine hemoglobin concentrations directly. Importantly, this methodology enables mapping of both oxygen saturation and total hemoglobin concentration, or alternatively, oxyhemoglobin and deoxyhemoglobin concentration, simultaneously. Quantification was ...

      Read Full Article
    3. Progress on developing wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

      Progress on developing wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

      We present a new design for a wavefront sensorless adaptive optics (WS-AO) Fourier domain optical coherence tomography (FD-OCT) system for small animal retinal imaging in vivo. Without the optical complications necessary for inclusion of a wavefront sensor in the optical system, this version of WS-AO FD-OCT system has a simplified optical design, including elimination of long focal length scanning optics and optical conjugation of vertical and horizontal scanners. This modification provides a modular large Field of View for retinal screening (25 degree visual angle), while also allowing a “zoom” capability for allocating all the scanning resources to a smaller region ...

      Read Full Article
    4. Multispectral scanning laser ophthalmoscopy combined with optical coherence tomography for simultaneous in vivo mouse retinal imaging

      Multispectral scanning laser ophthalmoscopy combined with optical coherence tomography for simultaneous in vivo mouse retinal imaging

      A compact, non-invasive multi-modal system has been developed for in vivo mouse retina imaging. It is configured for simultaneously detecting green and red fluorescent protein signals with scanning laser ophthalmoscopy (SLO) back-scattered light from the SLO illumination beam, and depth information about different retinal layers by means of Optical Coherence Tomography (OCT). Simultaneous assessment of retinal characteristics with different modalities can provide a wealth of information about the structural and functional changes in the retinal neural tissue and chorio-retinal vasculature in vivo. Additionally, simultaneous acquisition of multiple channels facilitates analysis of the data of different modalities by automatic temporal and ...

      Read Full Article
    5. Performance of a combined optical coherence tomography and scanning laser ophthalmoscope with adaptive optics for human retinal imaging application

      Performance of a combined optical coherence tomography and scanning laser ophthalmoscope with adaptive optics for human retinal imaging application

      We describe the design and performance of a recently implemented retinal imaging system for the human eye that combines adaptive optics (AO) with spectral domain optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO). The AO-OCT-SLO system simultaneously acquires SLO frames and OCT B-scans at 60 Hz with an OCT volume acquisition scan rate of 0.24 Hz. The SLO images are used to correct for eye motion during the registration of OCT B-scans. Key optical design considerations are discussed including: minimizing system aberrations through the use of off-axis relay telescopes; choice of telescope magnification based on pupil plane requirements ...

      Read Full Article
    6. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry

      In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry
      ... Medicine, University of California, Davis, Davis, CA, USA 2. 2 Department of Ophthalmology & Vision Science, UC Davis Eye Center, School of Medicine, University of California, Davis, 4860 Y St., Suite 2400, CA 95817, US...
      Read Full Article
    7. Feature Of The Week 02/01/2015: Progress on Developing Adaptive Optics OCT for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts (with Audio Narration)

      Feature Of The Week 02/01/2015: Progress on Developing Adaptive Optics OCT for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts (with Audio Narration)
      ...icroscopic structures. For more information see recent Article . Courtesy of Arlie Capps and John Werner from University of California at Davis . Recent progress in retinal image acquisition techniques, including optical...
      Read Full Article
    8. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

      In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

      Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing ...

      Read Full Article
    9. In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography

      In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography

      We present a noninvasive phase-variance (pv)–based motion contrast method for depth-resolved imaging of the human chorioretinal complex microcirculation with a newly developed phase-stabilized high speed (100-kHz A-scans/s) 1 - μ m swept-source optical coherence tomography (SSOCT) system. Compared to our previous spectral-domain (spectrometer based) pv-spectral domain OCT (SDOCT) system, this system has the advantages of higher sensitivity, reduced fringe wash-out for high blood flow speeds and deeper penetration in choroid. High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. This process does not require additional calibration hardware and complex numerical procedures. Our phase stabilization ...

      Read Full Article
    10. Post-Doc Position for biomedical engineer / vision scientist in small animal High-Resolution Retinal Imaging Group at University of California, Davis

      Post-Doc Position for biomedical engineer / vision scientist in small animal High-Resolution Retinal Imaging Group at University of California, Davis
      ...he UC Davis EyePod Small Animal Imaging Laboratory in the Department of Cell Biology and Human Anatomy at the UC Davis Main Campus. The goal of our research is to develop the next generation in vivo small animal cellular...
      Read Full Article
    11. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation

      Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation

      The BOLD (blood-oxygen-level dependent) fMRI (functional Magnetic Resonance Imaging) signal is shaped, in part, by changes in red blood cell (RBC) content and flow across vascular compartments over time. These complex dynamics have been challenging to characterize directly due to a lack of appropriate imaging modalities. In this study, making use of infrared light scattering from RBCs, depth-resolved Optical Coherence Tomography (OCT) angiography was applied to image laminar functional hyperemia in the rat somatosensory cortex. After defining and validating depth-specific metrics for changes in RBC content and speed, laminar hemodynamic responses in microvasculature up to cortical depths of > 1 mm ...

      Read Full Article
    12. Two research scientist positions are available in the Vision Science and Advanced Retinal Imaging Laboratory at the University of California, Davis

      Two research scientist positions are available in the Vision Science and Advanced Retinal Imaging Laboratory at the University of California, Davis

      Two research scientist positions are available in the Vision Science and Advanced Retinal Imaging Laboratory at the University of California, Davis. One position will be filled by someone with background in vision science while the other will be for a person with experience in a high-resolution imaging modality such as OCT, adaptive optics or scanning laser ophthalmoscope. Strong skills in programming or image processing would be an asset. The positions will be open until filled. Salary will be based on experience and salary scales of the UC. The University of California is committed to diversity. Minorities, women, veterans and persons ...

      Read Full Article
    13. 1-15 of 118 1 2 3 4 5 6 7 8 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About UC Davis

    UC Davis

    University of California at Davis is a public university located in the city of Davis, California and is one of the ten campuses of the University of California. Vision Science and Advanced Retinal Imaging Laboratory is at the University of California, Davis and is concerned with understanding the functional and structural basis of early stage mechanisms of human vision. Center for Biophotonics, Science and Technology at The University of California at Davis.  The Center for Biophotonics, Science and Technology (CBST) was conceived in response to the NRC recommendations. UC Davis Medical Center is a major research hospital located in Sacramento, California and is the primary teaching hospital of UC Davis School of Medicine. Researchers and specialists at the 577 licensed bed medical center work in over 150 areas of specialty. The UC Davis hospital has been ranked among the top 50 hospitals in the nation in the 2004 survey of US News and World Report. Particularly respected are its programs in heart surgery and ear, nose, and throat treatment. It is also a Level I trauma center for both adults and pediatrics.