1. UC Davis

    0 Comments Leave a Comment

    1-15 of 141 1 2 3 4 5 6 7 8 9 10 »
    1. Mentioned In 141 Articles

    2. The University of California at Davis Receives NIH Grant for the Rodent Eye as a Non-Invasive Window for Understanding Cancer Nanotheraputics

      The University of California at Davis Receives NIH Grant for the Rodent Eye as a Non-Invasive Window for Understanding Cancer Nanotheraputics
      ...a-tumoral biodistribution and fate of drugs encapsulated by nanocarrier, and nanodelivery across the BRB. The University of California at Davis Receives a 2016 NIH Grant for $586,386 for The Rodent Eye as a Non-Invasive ...
      Read Full Article
    3. Role of Tractional Forces and Internal Limiting Membrane in Macular Hole Formation: Insights from Intraoperative Optical Coherence Tomography

      Role of Tractional Forces and Internal Limiting Membrane in Macular Hole Formation: Insights from Intraoperative Optical Coherence Tomography
      We report the case of a 69-year-old patient who underwent vitrectomy for vitreomacular traction (VMT) and developed a postoperative macular hole that was observed 1 week after surgery. The hole did not close by in-office fluid-gas exchange alone, but was achieved after repeat surgery with internal limiting membrane (ILM) peeling. Intraoperative OCT (iOCT) images from the first surgery revealed an occult macular hole that formed after VMT release. We discuss ...
      Read Full Article
      Mentions: UC Davis
    4. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

      A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future
      Purpose : Optical coherence tomography (OCT) has enabled virtual biopsy of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to ...
      Read Full Article
    5. Lens-based wavefront sensorless adaptive optics swept source OCT

      Lens-based wavefront sensorless adaptive optics swept source OCT
      Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination ...
      Read Full Article
    6. Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy

      Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy
      This case report uses phase-variance optical coherence tomographic angiography to demonstrate transient inner choroidal flow changes associated with acute posterior multifocal placoid pigment epitheliopathy. Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) is characterized by bilateral multiple placoid white-gray lesions of the posterior pole at the level of the retinal pigment epithelium (RPE) and/or choriocapillaris, which self-resolve with recovery of vision. 1 , 2 The etiology is unknown, but APMPPE has ...
      Read Full Article
    7. Post-Doc Position for Biomedical Engineer / Vision Scientist in the UC Davis EyePod - Small Animal Retinal Imaging Laboratory at University of California, Davis

      Post-Doc Position for Biomedical Engineer / Vision Scientist in the UC Davis EyePod - Small Animal Retinal Imaging Laboratory at University of California, Davis
      ...he UC Davis EyePod Small Animal Imaging Laboratory in the Department of Cell Biology and Human Anatomy at the UC Davis Main Campus. The goal of our research is to develop and translate the next generation in vivo cellula...
      Read Full Article
    8. An iterative closest point approach for the registration of volumetric human retina image data obtained by optical coherence tomography

      An iterative closest point approach for the registration of volumetric human retina image data obtained by optical coherence tomography
      This paper introduces an improved approach for the volume data registration of human retina. Volume data registration refers to calculating out a near-optimal transformation between two volumes with overlapping region and stitching them together. Iterative closest point (ICP) algorithm is a registration method that deals with registration between points. Classical ICP is time consuming and often traps in local minimum when the overlapping region is not big enough. Optical Coherence ...
      Read Full Article
    9. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid

      Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid
      We compared the performance of three OCT angiography (OCTA) methods: speckle variance, amplitude decorrelation and phase variance for imaging of the human retina and choroid. Two averaging methods, split spectrum and volume averaging, were compared to assess the quality of the OCTA vascular images. All data were acquired using a swept-source OCT system at 1040 nm central wavelength, operating at 100,000 A-scans/s. We performed a quantitative comparison using ...
      Read Full Article
    10. Imaging and graphing of cortical vasculature using dynamically focused optical coherence microscopy angiography

      Imaging and graphing of cortical vasculature using dynamically focused optical coherence microscopy angiography
      Recently, optical coherence tomography (OCT) angiography has enabled label-free imaging of vasculature based on dynamic scattering in vessels. However, quantitative volumetric analysis of the vascular networks depicted in OCT angiography data has remained challenging. Multiple-scattering tails (artifacts specific to the imaging geometry) make automated assessment of vascular morphology problematic. We demonstrate that dynamically focused optical coherence microscopy (OCM) angiography with a high numerical aperture, chosen so the scattering length greatly ...
      Read Full Article
    11. Post-Doc Position for biomedical engineer / vision scientist in the UC Davis EyePod - Small Animal Retinal Imaging Laboratory at University of California, Davis

      Post-Doc Position for biomedical engineer / vision scientist in the UC Davis EyePod - Small Animal Retinal Imaging Laboratory at University of California, Davis
      ...he UC Davis EyePod Small Animal Imaging Laboratory in the Department of Cell Biology and Human Anatomy at the UC Davis Main Campus. The goal of our research is to develop and translate the next generation in vivo Read Full Article
    12. University of California at Davis Receives NIH Grant for Properties of Photoreceptors and Muller Cells Investigated with AO-OCT

      University of California at Davis Receives NIH Grant for Properties of Photoreceptors and Muller Cells Investigated with AO-OCT
      ... laboratory of John S. Werner where AO-OCT instrumentation has been pioneered and conveniently located in the UC Davis Eye Center. One AO-OCT system is available for the candidate's modification and exclusive use. Traini...
      Read Full Article
    13. In vivo wide-field multispectral scanning laser ophthalmoscopy–optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature

      In vivo wide-field multispectral scanning laser ophthalmoscopy–optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature
      Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) provide complementary views of the retina, with the former collecting fluorescence data with good lateral but relatively low-axial resolution, and the latter collecting label-free backscattering data with comparable lateral but much higher axial resolution. To take maximal advantage of the information of both modalities in mouse retinal imaging, we have constructed a compact, four-channel, wide-field ( 50 deg ) system that simultaneously acquires ...
      Read Full Article
    14. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7  μm optical coherence tomography

      Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7  μm optical coherence tomography
      A spectral/Fourier domain optical coherence tomography (OCT) intravital microscope using a supercontinuum light source at 1.7 m was developed to study subcortical structures noninvasively in the living mouse brain. The benefits of 1.7 m for deep tissue brain imaging are demonstrated by quantitatively comparing OCT signal attenuation characteristics of cortical tissue across visible and near-infrared wavelengths. Imaging of hippocampal tissue architecture and white matter microvasculature are demonstrated ...
      Read Full Article
    15. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography

      Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography
      The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging ...
      Read Full Article
    16. 1-15 of 141 1 2 3 4 5 6 7 8 9 10 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About UC Davis

    UC Davis

    University of California at Davis is a public university located in the city of Davis, California and is one of the ten campuses of the University of California. Vision Science and Advanced Retinal Imaging Laboratory is at the University of California, Davis and is concerned with understanding the functional and structural basis of early stage mechanisms of human vision. Center for Biophotonics, Science and Technology at The University of California at Davis.  The Center for Biophotonics, Science and Technology (CBST) was conceived in response to the NRC recommendations. UC Davis Medical Center is a major research hospital located in Sacramento, California and is the primary teaching hospital of UC Davis School of Medicine. Researchers and specialists at the 577 licensed bed medical center work in over 150 areas of specialty. The UC Davis hospital has been ranked among the top 50 hospitals in the nation in the 2004 survey of US News and World Report. Particularly respected are its programs in heart surgery and ear, nose, and throat treatment. It is also a Level I trauma center for both adults and pediatrics.