1. Tianyuan Chen

    0 Comments Leave a Comment

    1-13 of 13
    1. Mentioned In 13 Articles

    2. Feature Of The Week 11/26/2016: Tsinghua University Demonstrates Optical Computing Technique and Achieves High Speed OCT of 10 Mega-A-Scans/Second.

      Feature Of The Week 11/26/2016: Tsinghua University Demonstrates Optical Computing Technique and Achieves High Speed OCT of 10 Mega-A-Scans/Second.
      In the past few decades, OCT has been applied in a wide range of applications including clinical and material research areas. For some biomedical applications such as surgical guidance, real-time volumetric OCT (4D-OCT) imaging is in high demand. However, for high definition volumetric imaging in real time, i.e., 1000pixels along 3 spatial dimensions and 30 volumetric imaging per second, the data flow will be 10001000100030=30GVoxel/s. To process ...
      Read Full Article
    3. Optical computing for optical coherence tomography

      Optical computing for optical coherence tomography
      We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally ...
      Read Full Article
    4. Feature Of The Week 2/2/14: Tsinghua University.Demonstrates Linear-in-Wavenumber Swept Laser with an Acousto-Optic Deflector for OCT

      Feature Of The Week 2/2/14: Tsinghua University.Demonstrates Linear-in-Wavenumber Swept Laser with an Acousto-Optic Deflector for OCT
      Compared to the conventional time domain OCT, the frequency domain (FD) detection techniques enable a dramatic increase in imaging speed. Spectrometer-based FD-OCT (SD-OCT) systems are already widely used, especially for ophthalmic application in the 800 nm wavelength range. Alternatively, the application of FD-OCT systems based on a rapidly swept, narrowband light source, i.e. swept source OCT (SS-OCT) offers the additional advantages of dual balance detection, potentially longer ranging depth ...
      Read Full Article
    5. Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor

      Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor
      We present an endoscopic probe for optical coherence tomography (OCT) equipped with a miniaturized hollow ultrasonic motor that rotates the objective lens and provides an internal channel for the fiber to pass through, enabling 360 deg unobstructed circumferential scanning. This probe has an outer diameter of 1.5 mm, which is ultra-small for motorized probes with an unobstructed view in distal scanning endoscopic OCT. Instead of a mirror or prism ...
      Read Full Article
    6. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

      Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis
      The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the ...
      Read Full Article
    7. Understanding three-dimensional spatial relationship between the mouse second polar body and first cleavage plane with full-field optical coherence tomography

      Understanding three-dimensional spatial relationship between the mouse second polar body and first cleavage plane with full-field optical coherence tomography
      he morphogenetic relationship between early patterning and polarity formation is of fundamental interest and remains a controversial issue in preimplantation embryonic development. We use a label-free three-dimensional (3-D) imaging technique of full-field optical coherence tomography (FF-OCT) successfully for the first time to study the dynamics of developmental processes in mouse preimplantation lives. Label-free 3-D subcellular time-lapse images are demonstrated to investigate 3-D spatial relationship between the second polar body (2PB ...
      Read Full Article
    8. Feature Of The Week 7/22/12: Label-Free Subcellular 3D Live Imaging of Preimplantation Mouse Embryos With Full-Field Optical Coherence Tomography

      Feature Of The Week 7/22/12: Label-Free Subcellular 3D Live Imaging of Preimplantation Mouse Embryos With Full-Field Optical Coherence Tomography
      arly patterning and polarity is of fundamental interest in preimplantation embryonic development. Label-free subcellular 3D live imaging is very helpful to its related studies. We have developed a novel system of full-field optical coherence tomography (FF-OCT) for noninvasive 3D subcellular live imaging of preimplantation mouse embryos with no need of dye labeling. 3D digitized embryos can be obtained by image processing. Label-free 3D live imaging is demonstrated for the mouse ...
      Read Full Article
    9. Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography

      Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography
      Early patterning and polarity is of fundamental interest in preimplantation embryonic development. Label-free subcellular 3D live imaging is very helpful to its related studies. We have developed a novel system of full-field optical coherence tomography (FF-OCT) for noninvasive 3D subcellular live imaging of preimplantation mouse embryos with no need of dye labeling. 3D digitized embryos can be obtained by image processing. Label-free 3D live imaging is demonstrated for the mouse ...
      Read Full Article
    10. 1-13 of 13
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Tianyuan Chen

    Tianyuan Chen

    Tianyuan Chen is a graduate student pursuing a Ph.D. in the Laboratory of Low-Dimensional Quantum Physics and Department of Physics at Tsinghua University in China. He received his first bachelor’s degree in Applied Physics at Physics Department and second bachelor’s degree in Computer Application at School of Electronic, Information and Electrical Engineering from Shanghai Jiaotong University in China in 2011.