1. Stephen A. Boppart

    0 Comments Leave a Comment

    211-225 of 238 « 1 2 ... 12 13 14 15 16 »
    1. Mentioned In 238 Articles

    2. Volumetric Endoscopic Coherence Microscopy Using A Coherent Fiber Bundle (Wo 2008/091755)

      Volumetric Endoscopic Coherence Microscopy Using A Coherent Fiber Bundle (Wo 2008/091755)
      Methods for employing coherent bundles of optical fibers, whether single- or multi-mode, for optical coherence tomography or optical coherence microscopy. Either a substantially monochromatic source or a broadband source (200) has its spatial coherence reduced and/or is spatially filtered prior to coupling into the fiber bundle for 'illumination of a sample. A scattered signal from features disposed beneath the surface of the sample is interfered with a reference signal ...
      Read Full Article
    3. Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications

      ...Stephen A. Boppart, Freddy T. Nguyen, Adam M. Zysk et al. Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the second leading type of cancer deaths for women. The me...
      Read Full Article
    4. Stabilization of continuum generation from normally dispersive nonlinear optical fibers for a tunable broad bandwidth source for optical coherence tomography

      ...007 Revised Manuscript: April 30, 2007 Published: July 9, 2007 Citation H. Tu, D. L. Marks, Y. L. Koh, and S. A. Boppart, "Stabilization of continuum generation from normally dispersive nonlinear optical fibers for a ...
      Read Full Article
    5. Interferometric synthetic aperture microscopy: tissue structure inferred by computed imaging techniques

      Interferometric synthetic aperture microscopy: tissue structure inferred by computed imaging techniques
      Daniel L. Marks, Tyler S. Ralston, Brynmor J. Davis et al. Interferometric Synthetic Aperture Microscopy (ISAM) is an optical microscopy computed-imaging technique for measuring the optical properties of three-dimensional structures and biological tissues. In this work, the principle of ISAM is reviewed, and its application to imaging tissue properties in v ... [Proc. SPIE Int. Soc. Opt. Eng. 6864, 686407 (2008)] published Fri Feb 15, 2008.
      Read Full Article
    6. Magnetic protein microspheres as dynamic contrast agents for magnetomotive optical coherence tomography

      Freddy T. Nguyen, Elizabeth M. Dibbern, Eric J. Chaney et al. Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been developed over the last 15 years. More recently, OCT has been used for the intraoperative imaging of tumor margins in breast cancer and axillary lymph nodes providing a real time in-vivo assessment of the tis ... [Proc. SPIE Int. Soc. Opt. Eng. 6867, 68670F (2008)] published Wed ...
      Read Full Article
    7. Plasmon-resonant gold nanorods provide spectroscopic OCT contrast in excised human breast tumors

      Amy L. Oldenburg, Matthew N. Hansen, Alexander Wei et al. Plasmon-resonant gold nanorods have been demonstrated recently as contrast agents for optical coherence tomography (OCT). To evaluate their ability to produce contrast in a structurally heterogeneous environment, nanorods were injected at discrete locations into an excised sample of human breast inv ... [Proc. SPIE Int. Soc. Opt. Eng. 6867, 68670E (2008)] published Wed Feb 13, 2008.
      Read Full Article
    8. 211-225 of 238 « 1 2 ... 12 13 14 15 16 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Stephen A. Boppart

    Stephen A. Boppart

    Stephen A. Boppart is a professor in the Biophotonics Imaging Laboratory at the University of Illinois Urbana Champaign.  Dr. Boppart received his Ph.D. from the Massachusetts Institute of Technology in 1998, followed by a M.D. from Harvard Medical School in 2000. Currently Prof. Boppart is a full-time faculty member in the Beckman Institute Nanoelectronics and Biophotonics Group as well as an associate professor in the UIUC Department of Electrical and Computer Engineering and the Bioengineering Department. In January 2007, he was named the Founding Director of the Mills Breast Cancer Institute at Carle Foundation Hospital. Dr. Boppart is also a Clinical Research Physician in the UI College of Medicine-Urbana. His fields of professional interest include optical imaging (specifically in Optical Coherence Tomography) and biophotonics in medicine and biology.

  3. Quotes

    1. With advances in microscopy techniques such as ours, we hope to change the way we detect, visualize and monitor diseases that will lead to better diagnosis, treatments and outcomes.
      In IMAGING TECHNIQUE FROM BECKMAN LAB NAMED TOP 10 MICROSCOPY INNOVATION
    2. Any state of disease will alter the cells and molecules in our body...leaving a distinct optical scattering signature.” The new device senses cancer cells’ unique signatures, letting surgeons know which areas around the tumor are cancerous and which are safe to leave alone.
      In Flashlight-Sized Probe Can Spot Cancer Cells in Real Time
    3. We agree that, given the images we've seen from the hardware [adaptive optics] systems, our computational approaches are equivalent to those...In addition, we think we could do better by correcting the finer aberrations and by being able to manipulate the data post-acquisition, which gives us a lot more flexibility.
      In Bringing the human eye into focus
    4. We agree that, given the images we've seen from the hardware [adaptive optics] systems, our computational approaches are equivalent to those...In addition, we think we could do better by correcting the finer aberrations and by being able to manipulate the data post-acquisition, which gives us a lot more flexibility.
      In Bringing the human eye into focus
    5. Jim's innovation, scholarly activities, professional service, entrepreneurial efforts, and impact on the field of biomedical optics typifies the spirit of this award, and reflects the seminal changes that Britton Chance made during his lifetime...Few researchers in the world today have had such a profound impact as a result of their technological work that has literally changed our field, changed the way we practice medicine, and directly improved the lives of perhaps hundreds of thousands of patients (considering ophthalmology and cardiology).
      In Fujimoto Honored with Britton Chance Biomedical Optics Award
    6. We know that antibiotics don’t always work well if you have a biofilm, because the bacteria protect themselves and become resistant...In the presence of a chronic ear infection that has a biofilm, the bacteria may not respond to the usual antibiotics, and you need to stop them. But without being able to detect the biofilm, we have no idea whether or not it’s responding to treatment.
      In Nowhere to hide: New device sees bacteria behind the eardrum
    7. I think it's going to dramatically change things...What we hope is that diagnosis is going to get shifted closer and closer to the point of care...We’re developing techniques to get at molecular changes..So much of medicine and pathology are based on structural changes. If we think of a pathologist looking at a slide, he or she looks at the cells and tissue structures. A radiologist will look at how organs and these anatomical structures are arranged...But with a lot of these techniques, we can get the molecular changes where disease starts. So a pathologist that has molecular information, not just structural, will perhaps catch disease earlier. The same is true for Rohit’s work and Gabi’s work.
      In Positive Results: A New Era for Medical Diagnostics - News from UIUC
    8. It's the same challenge, but instead of imaging through the atmosphere, we're imaging through tissue, and instead of imaging a star, we're imaging a cell.
      In Computing the best high-resolution 3-D tissue images - News from Beckman Institute at UIUC
    9. The effectiveness is striking...Because of the aberrations of the human eye, when you look at the retina without adaptive optics you just see variations of light and dark areas that represent the rods and cones. But when you use adaptive optics, you see the rods and cones as distinct objects...are working to compute the best image possible.
      In Computing the best high-resolution 3-D tissue images - News from Beckman Institute at UIUC
    10. to emphasize the role of medical imaging and how this technology has enabled us to look into the body at many different size scales, how imaging has enabled us to diagnose disease, and how imaging has made a difference in our healthcare...Federal dollars have been used to fund technology that’s going to change and improve health care. They already have. In the area of optics and high-resolution optical imaging, there’s going to be better healthcare, economic development with new companies, new jobs, and new areas of research to investigate...We can now do real-time microscopic imaging in the operating room without waiting for pathology.
      In Boppart Presents at Congressional Briefing