1. Ruikang K. Wang

    0 Comments Leave a Comment

    1-15 of 147 1 2 3 4 5 6 7 8 9 10 »
    1. Mentioned In 147 Articles

    2. Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding

      Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding

      Optical coherence tomography (OCT) based microangiography is capable of visualizing 3D functional blood vessel networks within microcirculatory tissue beds in vivo. To provide the quantitative information of vasculature from the microangiograms such as vessel diameter and morphology, it is necessary to develop efficient vessel segmentation algorithms. In this paper, we propose to develop a hybrid Hessian/intensity based method to segment and quantify shape and diameter of the blood vessels innervating capillary beds that are imaged by functional OCT in vivo. The proposed method utilizes multi-scale Hessian filters to segment tubular structures such as blood vessels, but compounded by the ...

      Read Full Article
    3. Swept-Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation-based Optical Microangiography Algorithms

      Swept-Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation-based Optical Microangiography Algorithms

      To demonstrate the feasibility of using a 1,050-nm swept-source optical coherence tomography (SS-OCT) system to achieve noninvasive retinal vasculature imaging in human eyes. MATERIALS AND METHODS: Volumetric data sets were acquired using a 1-µm SS-OCT prototype that operated at a 100-kHz A-line rate. A scanning protocol designed to allow for motion contrast processing, referred to as OCT angiography or optical microangiography (OMAG), was used to scan an approximately 3 × 3–mm area in the central macular region of the retina within approximately 4.5 seconds. An intensity differentiation-based OMAG algorithm was used to extract three-dimensional retinal functional microvasculature ...

      Read Full Article
    4. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

      Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

      We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with ...

      Read Full Article
    5. User-guided segmentation for volumetric retinal optical coherence tomography images

      User-guided segmentation for volumetric retinal optical coherence tomography images

      Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method ...

      Read Full Article
    6. In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe

      In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe
      ...a forward/side-viewing probe Woo June Choi and Ruikang K. Wang »View Author Affiliations Woo June Choi and Ruikang K. Wang^* ^Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, ...
      Read Full Article
    7. Method and apparatus for quantitative imaging of blood perfusion in living tissue

      Method and apparatus for quantitative imaging of blood perfusion in living tissue

      Embodiments provide methods and systems for quantitative imaging of blood perfusion in living tissue. A method provides for obtaining an optical microangiography (OMAG) image of a sample, wherein the image has an OMAG background sample; digitally reconstructing a homogeneous ideal static background tissue; replacing the OMAG background sample with the digitally reconstructed homogeneous ideal static background tissue; correlating two or more neighboring A-lines with the digitally reconstructed homogeneous ideal static background tissue; and measuring a phase difference between the two or more neighboring A-lines to quantify blood perfusion in the sample. Methods using digital reconstruction to reduce random phase noise ...

      Read Full Article
    8. Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue

      Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue
      ...vely assessing tissue microcirculation in the locally pressed tissue in vivo. Woo June Choi ; Hequn Wang and Ruikang K. Wang "Optical coherence tomography microangiography for monitoring the response of vascular perfus...
      Read Full Article
    9. Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm

      Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm

      We demonstrate an extended-imaging-range anterior-segment optical coherence tomography (eAS-OCT) system for the biometric assessment of full AS in human eye. This newly developed eAS-OCT operating at 1340-nm wavelength band is simultaneously capable of an imaging speed of 120 kHz A-line scan rate, an axial resolution of 7.2 μ m, and an extended imaging range of up to 16 mm in air. Imaging results from three healthy subjects and one subject with a narrow-angle demonstrate the instrument’s utility. With this system, it can provide anatomical dimensions of AS, including central corneal thickness, anterior chamber width, anterior chamber depth, crystalline lens ...

      Read Full Article
    10. Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application

      Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application
      ..., and Zhihong Huang »View Author Affiliations Chunhui Li,^1 Guangying Guan,^2,^3 Fan Zhang,^2 Ghulam Nabi,^1 Ruikang K. Wang,^2,^3 and Zhihong Huang^2 ^1Division of Imaging Technology, School of Medicine, University o...
      Read Full Article
    11. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask

      Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask

      Optical microangiography based on optical coherence tomography (OCT) is prone to noise that arises from a static tissue region. Here, we propose a method that can significantly reduce this noise. The method is developed based on an approach that uses the magnitude information of OCT signals to produce tissue microangiograms, especially suitable for the case where a swept-source OCT system is deployed. By combined use of two existing OCT microangiography methods—ultrahigh-sensitive optical microangiography (UHS-OMAG) and correlation mapping OCT (cmOCT)—the final tissue microangiogram is generated by masking UHS-OMAG image using the binary representation of cmOCT image. We find that ...

      Read Full Article
    12. 1-15 of 147 1 2 3 4 5 6 7 8 9 10 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Ruikang K. Wang

    Ruikang K. Wang

    Ruikang K. Wang is a professor in the biomedical engineering department at Washington University. He interests include: High resolution functional optical imaging using coherence gating and confocal gating techniques as applied to healthcare, Optical biopsy and functional imaging in tissue engineering, Photoacoustic imaging, and Light propagation in biological tissue.