1. Ruikang K. Wang

    0 Comments Leave a Comment

    1-15 of 161 1 2 3 4 ... 9 10 11 »
    1. Mentioned In 161 Articles

    2. University of Washington Receives NIH Grant to Study Non-invasive Real-Time Label-Free 3D Imaging of Retinal Microcirculation.

      University of Washington Receives NIH Grant to Study Non-invasive Real-Time Label-Free 3D Imaging of Retinal Microcirculation.
      ...Study Non-invasive real-time label-free 3D imaging of retinal microcirculation. The principal investigator is Ruikang Wang. The program began in 2014 and ends in 2018. Below is a summary of the proposed work. Non-invasi...
      Read Full Article
    3. Label-free optical imaging of lymphatic vessels within tissue beds in vivo

      Label-free optical imaging of lymphatic vessels within tissue beds in vivo

      Lymphatic vessels are a part of the circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of noninvasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, the lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels , mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label - free noninvasive ...

      Read Full Article
    4. Feature Of The Week 01/25/15: Detection and characterisation of biopsy tissue using quantitative optical coherence elastogaphy (OCE) in men with suspected prostate cancer.

      Feature Of The Week 01/25/15: Detection and characterisation of biopsy tissue using quantitative optical coherence elastogaphy (OCE) in men with suspected prostate cancer.

      Prostate cancer (PCa) is the most common non-cutaneous malignancy in men. Men suspected with PCa are then offered transrectal ultrasound (TRUS) guided prostate biopsies to confirm the diagnosis, which falls short of making a reliable differentiation between cancer and benign hyperplasia of the gland. Suspected cancerous lesions tend to be stiffer (or harder to feel) than benign tissue. Various elastography modalities such as Ultrasound elastography and MRI elastography are known to have poor spatial resolution, which limits their ability to differentiate small lesions and in identifying early and subtle changes. OCT is an optical imaging technique that enables high-resolution, cross-sectional ...

      Read Full Article
    5. Optical coherence tomography based microangiography for quantitative monitoring of structural and vascular changes in a rat model of acute uveitis in vivo: a preliminary study

      Optical coherence tomography based microangiography for quantitative monitoring of structural and vascular changes in a rat model of acute uveitis in vivo: a preliminary study
      ...l for the assessment and management of uveitis in vivo. Woo June Choi ; Kathryn L. Pepple ; Zhongwei Zhi and Ruikang K. Wang "Optical coherence tomography based microangiography for quantitative monitoring of structura...
      Read Full Article
    6. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

      Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

      Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a ...

      Read Full Article
    7. Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer

      Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer

      We present first quantitative three-dimensional (3D) data sets recorded using optical coherence elastography (OCE) for the diagnosis and detection of prostate cancer (PCa). 120 transrectal ultrasound guided prostate biopsy specimens from 10 men suspected with prostate cancer were imaged using OCE. 3D quantitative mechanical assessment of biopsy specimens obtained in kilopascals (kPa) at an interval of 40 µm was compared with histopathology. Sensitivity, specificity, and positive and negative predictive values were calculated for OCE in comparison to histopathology. The results show OCE imaging could reliably differentiate between benign prostate tissue, acinar atypical hyperplasia, prostatic intraepithelial neoplasia and malignant PCa. The ...

      Read Full Article
    8. Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography

      Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography

      The aqueous outflow system (AOS) is responsible for maintaining normal intraocular pressure (IOP) in the eye. Structures of the AOS have an active role in regulating IOP in healthy eyes and these structures become abnormal in the eyes with glaucoma. We describe a newly developed system platform to obtain high-resolution images of the AOS structures. By incorporating spectral domain optical coherence tomography (SD-OCT), the platform allows us to systematically control, image, and quantitate the responses of AOS tissue to pressure with a millisecond resolution of pulsed flow. We use SD-OCT to image radial limbal segments from the surface of the ...

      Read Full Article
    9. Shear wave elastography method combining phase-sensitive optical coherence tomography and coded acoustic radiation force

      Shear wave elastography method combining phase-sensitive optical coherence tomography and coded acoustic radiation force

      We combined phase-sensitive optical coherence tomography (PhS-OCT) and acoustic radiation force (ARF) to develop a shear wave elastography (SWE) method that could be used for ophthalmic applications. SWE measures tissue stiffness from the speed of shear waves propagating through tissue. Assessing the elastic properties of the cornea and the intraocular lens can, for example, help the management of refractive surgeries (myopia or presbyopia correction). OCT is a non-contact imaging method easily applicable in vivo that provides micron-scale resolution particularly suitable for characterizing ocular tissues. ARF is commonly used to remotely induce shear waves in tissue by emitting short (∼100 µs ...

      Read Full Article
    10. Shear wave elastography of ex vivo human corneas using phase-sensitive optical coherence tomography

      Shear wave elastography of ex vivo human corneas using phase-sensitive optical coherence tomography

      Assessing the biomechanical properties of the cornea can provide clinically valuable information in addition to structural images for better management of pathologies (e.g. glaucoma) or refractive surgeries. OCT provides a micron scale and high sensitivity that are ideal for ophthalmic applications. We propose a shear wave elastography (SWE) method for the cornea based on phase-sensitive optical coherence tomography (PhS-OCT). SWE consists in launching a propagating shear wave in tissues and retrieving tissue elasticity from the shear wave speed. We used a piezo-electric actuator in contact with the cornea to induce shear waves that were then tracked using a PhSOCT ...

      Read Full Article
    11. Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies

      Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies

      In an optical coherence tomography (OCT) scan from a living tissue, red blood cells (RBCs) are the major source of backscattering signal from moving particles within microcirculatory system. Measuring the concentration and velocity of RBC particles allows assessment of RBC flux and flow, respectively, to assess tissue perfusion and oxygen/nutrition exchange rates within micro-structures. In this paper, we propose utilizing spectral estimation techniques to simultaneously quantify bi-directional particle flow and relative flux by spectral estimation of the received OCT signal from moving particles within capillary tubes embedded in tissue mimicking phantoms. The proposed method can be directly utilized for ...

      Read Full Article
    12. Swept-Source OCT Angiography of Macular Telangiectasia Type 2

      Swept-Source OCT Angiography of Macular Telangiectasia Type 2

      BACKGROUND AND OBJECTIVE: To evaluate the central macular microvascular network in patients with macular telangiectasia type 2 (MacTel2) using optical coherence tomography (OCT)-based microangiography (OMAG). PATIENTS AND METHODS: Prospective, observational study of patients with MacTel2 evaluated using a swept-source OCT (SS-OCT) prototype. OMAG was performed using a 3 mm × 3 mm central foveal raster scan. The algorithm segmented the retina into three layers. Microvascular distribution was depicted as en face images, and qualitative information was compared to fluorescein angiography (FA) images. RESULTS: OMAG detected abnormal microvasculature in all MacTel2 eyes, predominantly in the middle retinal layers with neovascularization in ...

      Read Full Article
    13. 1-15 of 161 1 2 3 4 ... 9 10 11 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Ruikang K. Wang

    Ruikang K. Wang

    Ruikang K. Wang is a professor in the biomedical engineering department at Washington University. He interests include: High resolution functional optical imaging using coherence gating and confocal gating techniques as applied to healthcare, Optical biopsy and functional imaging in tissue engineering, Photoacoustic imaging, and Light propagation in biological tissue.