1. Robert A. Huber

    0 Comments Leave a Comment

    1-15 of 96 1 2 3 4 5 6 7 »
    1. Mentioned In 96 Articles

    2. High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography

      High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography
      We present a forward-viewing fiber scanning endoscope (FSE) for high-speed volumetric optical coherence tomography (OCT). The reduction in size of the probe was achieved by substituting the focusing optics by an all-fiber-based imaging system which consists of a combination of scanning single-mode fibers, a glass spacer, made from a step-index multi-mode fiber, and a gradient-index fiber. A lateral resolution of 11 m was achieved at a working distance of 1 ...
      Read Full Article
    3. Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography

      Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography
      We investigate the origin of high frequency noise in Fourier domain mode locked (FDML) lasers and present an extremely well dispersion compensated setup which virtually eliminates intensity noise and dramatically improves coherence properties. We show optical coherence tomography (OCT) imaging at 3.2 MHz A-scan rate and demonstrate the positive impact of the described improvements on the image quality. Especially in highly scattering samples, at specular reflections and for strong ...
      Read Full Article
    4. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates

      High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates
      We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz = 834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our ...
      Read Full Article
    5. Swept source OCT system and method with phase-locked detection

      Swept source OCT system and method with phase-locked detection
      A swept source OCT system and related method are disclosed. The system comprises a control device for operating a tunable light source in response to an electronic sweep control signal such that the tunable light source carries out wave length sweeps with a repetition rate f.sub.sweep, which depends on the frequency of the sweep control signal. The system further comprises a detection device for the time-resolved detection of ...
      Read Full Article
    6. Feature Of The Week 09/10/2017: Thermo-elastic Optical Coherence Tomography

      Feature Of The Week 09/10/2017: Thermo-elastic  Optical Coherence Tomography
      The conventional OCT image contrast is derived from elastic scattering, and shows the internal structure of the sample. The determination of the tissue type in OCT images usually depends on the interpretation by the image reader. More accurate tissue type contrast may be achieved by new OCT-based imaging modalities, with sensitivity to other physical parameters than scattering alone. Phase-sensitive OCT can detect tissue motion on nanometer-to- micrometer length scales using ...
      Read Full Article
    7. Thermo-elastic optical coherence tomography

      Thermo-elastic optical coherence tomography
      The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the ...
      Read Full Article
    8. Method for reducing the dimensionality of a spatially registered signal derived from the optical properties of a sample, and device therefor

      Method for reducing the dimensionality of a spatially registered signal derived from the optical properties of a sample, and device therefor
      At least one embodiment of the method is designed to create a two-dimensional image of a three-dimensional sample. The method comprises the following steps: provision of a wave-length-tunable light source (1) that emits primary radiation (P) with wavelengths that vary over time; sampling of location points of the sample (2) with the primary radiation (P); collection of secondary radiation (S), wherein the secondary radiation (S) is a part of the ...
      Read Full Article
    9. INTRAPAPILLARY PROLIFERATION IN OPTIC DISK PITS: Clinical Findings and Time-Related Changes

      INTRAPAPILLARY PROLIFERATION IN OPTIC DISK PITS: Clinical Findings and Time-Related Changes
      Purpose: To investigate the structural changes of intrapapillary proliferations associated with optic disk pits (ODPs) and optic disk pit maculopathy (ODP-M) using enhanced depth-spectral domain-optical coherence tomography (SD-EDI-OCT) and megahertz optical coherence tomography (MHz-OCT). Methods: Sixteen eyes of patients with ODPs were studied. Papillary and peripapillary areas were repeatedly examined with SD-EDI-OCT over time. To evaluate swept-source OCT, some of the patients additionally received MHz-OCT-imaging. Results: MHz-OCT or SD-EDI images ...
      Read Full Article
    10. Feature tracking for automated volume of interest stabilization on 4D-OCT images

      Feature tracking for automated volume of interest stabilization on 4D-OCT images
      A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon manually selects slices showing the anatomical structure of interest. In addition to common medical imaging such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the region of interest undergoing motion ...
      Read Full Article
    11. Analysis of FDML lasers with meter range coherence

      Analysis of FDML lasers with meter range coherence
      FDML lasers provide sweep rates in the MHz range at wide optical bandwidths, making them ideal sources for high speed OCT. Recently, at lower speed, ultralong-range swept-source OCT has been demonstrated using a tunable vertical cavity surface emitting laser (VCSEL) and also using a Vernier-tunable laser. These sources provide relatively high sweep rates and meter range coherence lengths. In order to achieve similar coherence, we developed an extremely well dispersion ...
      Read Full Article
    12. High-speed OCT light sources and systems [Invited]

      High-speed OCT light sources and systems [Invited]
      Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light ...
      Read Full Article
    13. Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy

      Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy
      Intravascular optical coherence tomography (IV-OCT) has gained widespread use over the past few years, offering highly detailed images of coronary artery pathologies and interventions (1) . In contrast to the cross-sectional view, longitudinal sections and 3-dimensional (3D) renderings are affected by cardiac motion artifacts and undersampling, complicating interpretation and measurements (2) . We developed Heartbeat OCT, a new OCT method that achieves up to 4,000 frames/s imaging speed for isotropically ...
      Read Full Article
    14. Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging

      Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging
      In order to realize fast OCT-systems with adjustable line rate, we investigate averaging of image data from an FDML based MHz-OCT-system. The line rate can be reduced in software and traded in for increased system sensitivity and image quality. We compare coherent and incoherent averaging to effectively scale down the system speed of a 3.2 MHz FDML OCT system to around 100 kHz in postprocessing. We demonstrate that coherent ...
      Read Full Article
    15. Dynamical Fabry-Perot tuneable filter device

      Dynamical Fabry-Perot tuneable filter device
      A Fabry-Perot tuneable filter device is described with reflecting elements separated by an optical path length to form an optical resonator cavity. A first actuator means is directly or indirectly coupled with a first reflecting element. And the first actuator means is configured to modulate the optical path length between first and second reflecting elements by a modulation amplitude to thereby sweep the optical resonator cavity through a band of ...
      Read Full Article
    16. 1-15 of 96 1 2 3 4 5 6 7 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Robert A. Huber

    Robert A. Huber

    Robert Huber the studied general physics at the Ludwig-Maximilians-Universität (LMU) in Munich, Germany, where he received his PhD for work on ultrafast electron transfer processes at dye-semiconductor surfaces in 2002. From 2002-2003 Robert Huber worked as Postdoc at the Institute of Physical and Theoretical Chemistry at the J. W. Goethe University in Frankfurt. From 2003 to 2006 he joined the group of Prof. J. G. Fujimoto at the Massachusetts Institute of Technology as postdoctoral associate. Since 2007 he leads an independent research group at the LMU Munich in the Emmy Noether program of the DFG and the ERC starting grant program of the European Union. His group was partner in the European consortium “FUN-OCT”. Robert Huber coauthored more than 90 peer reviewed publications and holds more than 6 patents. In 2003 he received the Albert-Weller award from the German Chemical Society for an outstanding PhD thesis, in 2008 he received the Rudolf-Kaiser for his work on femtosecond spectroscopy and the development of Fourier domain mode locked lasers. In 2011 and 2012 he was ranked amongst the top 40 young talents in the field of science in Germany by the business magazine "Capital". Since September 2013 Robert Huber is a professor for biomedical imaging at the Institute of Biomedical Optics at the University zu Lübeck.