Self-Supervised Sequence Recovery for Semi-Supervised Retinal Layer Segmentation

Automated layer segmentation plays an important role for retinal disease diagnosis in optical coherence tomography (OCT) images. However, the severe retinal diseases result in the performance degeneration of automated layer segmentation approaches. In this paper, we present a robust semi-supervised retinal layer segmentation network to relieve the model failures on abnormal retinas, in which we obtain the lesion features from the labeled images with disease-balanced distribution, and utilize the unlabeled ...
Read Full Article