1. Mathias Fink

    0 Comments Leave a Comment

    1-5 of 5
    1. Mentioned In 5 Articles

    2. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography

      Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography
      Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on ...
      Read Full Article
    3. Adaptive optics full-field optical coherence tomography

      Adaptive optics full-field optical coherence tomography
      We describe a simple and compact full-field optical coherence tomography (FFOCT) setup coupled to a transmissive liquid crystal spatial light modulator (LCSLM) to induce or correct aberrations. To reduce the system complexity, strict pupil conjugation was abandoned because low-order aberrations are often dominant. We experimentally confirmed a recent theoretical and experimental demonstration that the image resolution was almost insensitive to aberrations that mostly induce a reduction of the signal level ...
      Read Full Article
    4. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations

      Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations
      We show that with spatially incoherent illumination, the point spread function (PSF) width/spatial resolution of an imaging interferometer like that used in full-field optical coherence tomography (OCT) is almost insensitive to aberrations. In these systems, aberrations mostly induce a reduction of the signal level that leads to a loss of the signal-to-noise ratio without broadening the system PSF. This is demonstrated by comparison with traditional scanning OCT and wide-field ...
      Read Full Article
    5. Feature Of The Week: Feature Of The Week 1/26/14: ESPCI-ParisTech Investigates Full-Field Optical Coherence Tomograpy (FF-OCT) Shear Wave Elastography

      Feature Of The Week: Feature Of The Week 1/26/14: ESPCI-ParisTech Investigates Full-Field Optical Coherence Tomograpy (FF-OCT) Shear Wave Elastography
      Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field ...
      Read Full Article
    6. 1-5 of 5
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Mathias Fink

    Mathias Fink received the Ph.D. degree in solid-state physics in 1970 and received the doctorat es-sciences degree in 1978 from Paris University. His current research interests include medical ultrasonic imaging, ultrasonic therapy; nondestructive testing; underwater acoustics; telecommunications; seismology; active control of sound and vibration; analogies between optics, quantum mechanics, and acoustics; wave coherence in multiply scattering media; and time-reversal in physics. He holds 28 patents, and he has published more than 300 articles.