1. Massachusetts Institute of Technology

    0 Comments Leave a Comment

    496-510 of 568 « 1 2 ... 31 32 33 34 35 36 37 38 »
    1. Mentioned In 568 Articles

    2. State-of-the-art retinal optical coherence tomography.

      OCT functions as a type of optical biopsy, providing information on retinal pathology in situ and in real time, with resolutions approaching that of excisional biopsy and histopathology. The development of ultrabroad-bandwidth and tunable light sources, as well as high-speed Fourier detection techniques, has enabled a significant improvement in ophthalmic optical coherence tomography (OCT) imaging performance. Three-dimensional, ultrahigh-resolution OCT (UHR OCT) can provide information on intraretinal morphology that is not ...
      Read Full Article
    3. Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy.

      We present a novel interferometer for measuring angular distributions of backscattered light. The new system exploits a low-coherence source in a modified Michelson interferometer to provide depth resolution, as in optical coherence tomography, but includes an imaging system that permits the angle of the reference field to be varied in the detector plane by simple translation of an optical element. We employ this system to examine the angular distribution of ...
      Read Full Article
    4. Phase-dispersion optical tomography.

      We report on phase-dispersion optical tomography, a new imaging technique based on phase measurements using low-coherence interferometry. The technique simultaneously probes the target with fundamental and second-harmonic light and interferometrically measures the relative phase shift of the backscattered light fields. This phase change can arise either from reflection at an interface within a sample or from bulk refraction. We show that this highly sensitive (~5 degrees ) phase technique can complement ...
      Read Full Article
    5. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator.

      Single-mode X couplers and three-dimensional waveguides are fabricated in transparent glasses by use of an unamplified femtosecond laser generating energies of up to 100 nJ. Changing fabrication parameters such as power and scanning speed permits creation of waveguides with a wide range of structures and refractive-index difference. Optical coherence tomography shows large refractive-index changes of up to ~10(-2) in the waveguides; these changes are consistent with guided mode analysis ...
      Read Full Article
    6. In vivo ultrahigh-resolution optical coherence tomography.

      Ultrahigh-resolution optical coherence tomography (OCT) by use of state of the art broad-bandwidth femtosecond laser technology is demonstrated and applied to in vivo subcellular imaging. Imaging is performed with a Kerr-lens mode-locked Ti:sapphire laser with double-chirped mirrors that emits sub-two-cycle pulses with bandwidths of up to 350 nm, centered at 800 nm. Longitudinal resolutions of ~1mum and transverse resolution of 3mum, with a 110-dB dynamic range, are achieved in ...
      Read Full Article
    7. Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies

      Gold punchwork and underdrawing in Renaissance panel paintings are analyzed using both three-dimensional swept source / Fourier domain optical coherence tomography (3D-OCT) and high resolution digital photography. 3D-OCT can generate en face images with micrometer-scale resolutions at arbitrary ... [Opt. Express 15, 15972-15986 (2007)]
      Read Full Article
    8. Photoreceptor Disruption Secondary to Posterior Vitreous Detachment as Visualized Using High-Speed Ultrahigh-Resolution Optical Coherence Tomography

      Optical coherence tomography (OCT) has been shown to be beneficial in the diagnosis of posterior vitreous detachment (PVD) and vitreomacular traction. In 2001, ultrahigh-resolution OCT (UHR-OCT), capable of 3-m axial resolution in the human eye, has demonstrated refined visualization of outer retinal layers.1Dramatic advances in the imaging speed of OCT enable high pixel density, high-definition imaging with further improved image quality.2The following is a case of bilateral photoreceptor ...
      Read Full Article
    9. High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy

      We present a novel method for low noise, high-speed, real-time spectroscopy to monitor molecular absorption spectra. The system is based on a rapidly swept, narrowband CW Fourier-domain mode-locked (FDML) laser source for spectral encoding in time and an optically time-multiplexed split-pulse data ... [Opt. Express 15, 15115-15128 (2007)]
      Read Full Article
    10. 496-510 of 568 « 1 2 ... 31 32 33 34 35 36 37 38 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Massachusetts Institute of Technology

    Massachusetts Institute of Technology

    Massachusetts Institute of Technology (MIT) is a private, coeducational research university located in Cambridge, Massachusetts. MIT has five schools and one college, containing 32 academic departments, with a strong emphasis in theoretical, applied, and interdisciplinary scientific and technological research.  Laser Medicine and Medical Imaging Group at MIT.  The RLE Laser Medicine and Medical Imaging Group and its close collaborators were the originators of optical coherence tomography (OCT), a diagnostic technology now used in a growing number of medical fields. The group currently works to further understand and exploit the capabilities of OCT technology, with ongoing investigations in topics related to optical coherence microscopy development and optical biopsy using OCT.