1. Massachusetts General Hospital

    0 Comments Leave a Comment

    1-15 of 660 1 2 3 4 ... 42 43 44 »
    1. Mentioned In 660 Articles

    2. Measuring Barrett’s Epithelial Thickness with Volumetric Laser Endomicroscopy as a Biomarker to Guide Treatment

      Measuring Barrett’s Epithelial Thickness with Volumetric Laser Endomicroscopy as a Biomarker to Guide Treatment
      Background Radiofrequency ablation (RFA) treatment outcomes vary for unknown reasons. One hypothesis is that variations in Barretts epithelial thickness (BET) are associated with reduced RFA efficacy for thicker BET and strictures for thinner BET. Volumetric laser endomicroscopy (VLE) is an imaging modality that acquires high-resolution, depth-resolved images of BE. However, the attenuation of light by tissue and the lack of layering in Barretts tissue challenge BET measurements and the study ...
      Read Full Article
    3. Extended Coherence Length and Depth Ranging Using a Fourier-Domain Mode-Locked Frequency Comb and Circular Interferometric Ranging

      Extended Coherence Length and Depth Ranging Using a Fourier-Domain Mode-Locked Frequency Comb and Circular Interferometric Ranging
      Fourier-domain mode locking has been a popular laser design for high-speed optical-frequency-domain imaging (OFDI), but achieving long coherence lengths, and therefore imaging range, has been challenging. The narrow linewidth of a Fourier-domain mode-locked (FDML) frequency-comb (FC) laser could provide an attractive platform for high-speed as well as long-range OFDI. Unfortunately, aliasing artifacts arising from signals beyond the principal measurement depth of the free spectral range have prohibited the use of ...
      Read Full Article
    4. MGH Receives NIH Grant for Unique Value of Real-TIme Shear Stress to Enhance Coronary Disease Management.

      MGH Receives NIH Grant for Unique Value of Real-TIme Shear Stress to Enhance Coronary Disease Management.
      ... prognostication of individual coronary lesions, leading to more informed clinical decision-making and better Massachusetts General Hospital Receives a 2019 NIH Grant for $729,778 for Unique Value of Real-TIme Shear Stre...
      Read Full Article
    5. Imaging the Human Prostate Gland Using 1-μm-Resolution Optical Coherence Tomography

      Imaging the Human Prostate Gland Using 1-μm-Resolution Optical Coherence Tomography
      Context. The accuracy of needle biopsy for the detection of prostate cancer is limited by well-known sampling errors. Thus, there is an unmet need for a microscopic screening tool that can screen large regions of the prostate comprehensively for cancer. Previous prostate imaging by optical coherence tomography (OCT) have had insufficient resolution for imaging cellular features related to prostate cancer. We have recently developed micro-optical coherence tomography (OCT) that generates ...
      Read Full Article
    6. In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice

      In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice
      The traditional surgical pathology assessment requires tissue to be removed from the patient, then processed, sectioned, stained, and interpreted by a pathologist using a light microscope. Today, an array of alternate optical imaging technologies allow tissue to be viewed at high resolution, in real time, without the need for processing, fixation, freezing, or staining. Optical imaging can be done in living patients without tissue removal, termed in vivo microscopy, or ...
      Read Full Article
    7. Demonstration of Triband Multi-Focal Imaging with Optical Coherence Tomography

      Demonstration of Triband Multi-Focal Imaging with Optical Coherence Tomography
      We demonstrate an extended depth of focus optical coherence tomography (OCT) system based on the use of chromatic aberration to create displaced focal planes in the sample. The system uses a wavelength-swept source tuning over three spectral bands and three separate interferometers, each of which interfaces to a single illumination/collection fiber. The resulting three imaged volumes are merged in post-processing to generate an image with a larger depth of ...
      Read Full Article
    8. Postdoctoral Research Fellowships (Optical Coherence Tomography) The Tearney Lab at the Wellman Center for Photomedicine

      Postdoctoral Research Fellowships (Optical Coherence Tomography) The Tearney Lab at the Wellman Center for Photomedicine
      ... of optical coherence tomography (OCT) is available in the Tearney Lab at the Massachusetts General Hospital (MGH) in the Wellman Center for Photomedicine. This appointment will be made at the rank of postdoctoral fellow...
      Read Full Article
    9. Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21

      Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21
      Optical coherence tomography is an optical technique that uses backscattered light to highlight intrinsic structure, and when applied to brain tissue, it can resolve cortical layers and fiber bundles. Optical coherence microscopy (OCM) is higher resolution (i.e., 1.25 m) and is capable of detecting neurons. In a previous report, we compared the correspondence of OCM acquired imaging of neurons with traditional Nissl stained histology in entorhinal cortex layer ...
      Read Full Article
    10. Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography

      Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography
      Birefringence offers an intrinsic contrast mechanism related to the microstructure and arrangement of fibrillary tissue components. Here we present a reconstruction strategy to recover not only the scalar amount of birefringence, but also its optic axis orientation as a function of depth in tissue from measurements with catheter-based polarization-sensitive optical coherence tomography. A polarization symmetry constraint, intrinsic to imaging in the backscatter direction, facilitates the required compensation for wavelength-dependent transmission ...
      Read Full Article
    11. Diagnostic Capability of Three-Dimensional Macular Parameters for Glaucoma Using Optical Coherence Tomography Volume Scans

      Diagnostic Capability of Three-Dimensional Macular Parameters for Glaucoma Using Optical Coherence Tomography Volume Scans
      Purpose : To compare the diagnostic capability of three-dimensional (3D) macular parameters against traditional two-dimensional (2D) retinal nerve fiber layer (RNFL) thickness using spectral domain optical coherence tomography. To determine if manual correction and interpolation of B-scans improve the ability of 3D macular parameters to diagnose glaucoma. Methods : A total of 101 open angle glaucoma patients (29 with early glaucoma) and 57 healthy subjects had peripapillary 2D RNFL thickness and 3D ...
      Read Full Article
    12. Extended coherence length and depth ranging using a Fourier domain mode-locked frequency comb and circular interferometric ranging

      Extended coherence length and depth ranging using a Fourier domain mode-locked frequency comb and circular interferometric ranging
      Fourier domain mode-locking (FDML) has been a popular laser design for high speed optical frequency domain imaging (OFDI) but achieving long coherence lengths, and therefore imaging range, has been challenging. The narrow instantaneous linewidth of a frequency comb (FC) FDML laser could provide an attractive platform for high speed as well as long range OFDI. Unfortunately, aliasing artifacts arising from signals beyond the principle measurement depth of the free spectral ...
      Read Full Article
    13. 1-15 of 660 1 2 3 4 ... 42 43 44 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Massachusetts General Hospital

    Massachusetts General Hospital

    Massachusetts General Hospital is a teaching hospital of Harvard Medical School and biomedical research facility in Boston, Massachusetts. It is owned and operated by Partners HealthCare (which also owns Brigham and Women's Hospital and North Shore Medical Center).

  3. Quotes about Massachusetts General Hospital

    1. We are excited to see the publication of this data from our collaborators at Massachusetts General Hospital that clearly demonstrate the imaging technology can produce valuable images of esophageal tissue...We look forward to moving ahead with continued development of this exciting new technology.
      Charles Carignan in NinePoint Medical Imaging Technology Highlighted in Nature Medicine