1. Manmohan Singh

    0 Comments Leave a Comment

    1-15 of 51 1 2 3 4 »
    1. Mentioned In 51 Articles

    2. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography

      Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography
      Significance: It is generally agreed that the corneal mechanical properties are strongly linked to many eye diseases and could be used to assess disease progression and response to therapies. Elastography is the most notable method of assessing corneal mechanical properties, but it generally requires some type of external excitation to induce a measurable displacement in the tissue. Aim: We present Heartbeat Optical Coherence Elastography (Hb-OCE), a truly passive method that ...
      Read Full Article
    3. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy

      Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy
      Assessing the biomechanical properties of the crystalline lens can provide crucial information for diagnosing disease and guiding precision therapeutic interventions. Existing noninvasive methods have been limited to global measurements. Here, we demonstrate the quantitative assessment of the elasticity of crystalline lens with a multimodal optical elastography technique, which combines dynamic wave-based optical coherence elastography (OCE) and Brillouin microscopy to overcome the drawbacks of individual modalities. OCE can provide direct measurements ...
      Read Full Article
    4. Assessing the Acute Effects of Prenatal Synthetic Cannabinoid Exposure on Murine Fetal Brain Vasculature Using Optical Coherence Tomography

      Assessing the Acute Effects of Prenatal Synthetic Cannabinoid Exposure on Murine Fetal Brain Vasculature Using Optical Coherence Tomography
      Marijuana is one of the most commonly abused substances during pregnancy. Synthetic cannabinoids (SCBs) are a group of heterogeneous compounds that are 40‐ to 600‐fold more potent than ∆ 9 ‐tetrahydrocannabinol , the major psychoactive component of marijuana. With SCBs being legally available for purchase and the prevalence of unplanned pregnancies, the possibility of prenatal exposure to SCBs is high. However, the effects of prenatal SCB exposure on embryonic brain development ...
      Read Full Article
    5. Optical coherence elastography of cold cataract in porcine lens

      Optical coherence elastography of cold cataract in porcine lens
      Cataract is one of the most prevalent causes of blindness around the world. Understanding the mechanisms of cataract development and progression is important for clinical diagnosis and treatment. Cold cataract has proven to be a robust model for cataract formation that can be easily controlled in the laboratory. There is evidence that the biomechanical properties of the lens can be significantly changed by cataract. Therefore, early detection of cataract, as ...
      Read Full Article
    6. Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography

      Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography
      In this study, we investigated the relationship between the biomechanical properties of the crystalline lens and intraocular pressure (IOP) using a confocal acoustic radiation force (ARF) and phase-sensitive optical coherence elastography (OCE) system. ARF induced a small displacement at the apex of porcine lenses in situ at various artificially controlled IOPs. Maximum displacement, relaxation rate, and Youngs modulus were utilized to assess the stiffness of the crystalline lens. The results ...
      Read Full Article
    7. Modified wavelength scanning interferometry for simultaneous tomography and topography of the cornea with Fourier domain optical coherence tomography

      Modified wavelength scanning interferometry for simultaneous tomography and topography of the cornea with Fourier domain optical coherence tomography
      Visual acuity is dependent on corneal shape and size. A minor variation in surface geometry can cause a deformation of corneal geometry, which affects its optical performance. In this work we demonstrate an algorithm for the simultaneous measurement of corneal tomography and topography with a traditional point-scanning Fourier domain optical coherence tomography (FD-OCT) system. A modified wavelength scanning interferometry (mWSI) algorithm enabled topographical evaluation of the surface with nanometer-scale resolution ...
      Read Full Article
    8. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography

      Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography
      Purpose To quantify the effects of the hydration state on the Young's modulus of the cornea . Setting Biomedical Optics Laboratory, University of Houston, Houston, Texas, USA. Design Experimental study. Methods Noncontact, dynamic optical coherence elastography (OCE) measurements were taken of in situ rabbit corneas in the whole eyeglobe configuration (n = 10) and at an artificially controlled intraocular pressure of 15 mm Hg. Baseline OCE measurements were taken by topically ...
      Read Full Article
    9. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography

      Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography
      SIGNIFICANCE Measured corneal biomechanical properties are driven by intraocular pressure, tissue thickness, and inherent material properties. We demonstrate tissue thickness as an important factor in the measurement of corneal biomechanics that can confound short-term effects due to UV riboflavin cross-linking (CXL) treatment. PURPOSE We isolate the effects of tissue thickness on the measured corneal biomechanical properties using optical coherence elastography by experimentally altering the tissue hydration state and stiffness. METHODS ...
      Read Full Article
    10. Quantifying changes in lens biomechanical properties due to cold cataract with optical coherence elastography

      Quantifying changes in lens biomechanical properties due to cold cataract with optical coherence elastography
      Cataract is the most prevalent cause of visual impairment worldwide. Cataracts can be formed due to trauma, radiation, drug abuse, or low temperatures. Thus, early detection of cataract can be immensely helpful for preserving visual acuity by ensuring that the appropriate therapeutic procedures are performed at earlier stages of disease onset and progression. In this work, we utilized a phase-sensitive optical coherence elastography (OCE) system to quantify changes in biomechanical ...
      Read Full Article
    11. Biomechanical assessment of myocardial infarction using optical coherence elastography

      Biomechanical assessment of myocardial infarction using optical coherence elastography
      Myocardial infarction (MI) leads to cardiomyocyte loss, impaired cardiac function, and heart failure. Molecular genetic analyses of myocardium in mouse models of ischemic heart disease have provided great insight into the mechanisms of heart regeneration, which is promising for novel therapies after MI. Although biomechanical factors are considered an important aspect in cardiomyocyte proliferation, there are limited methods for mechanical assessment of the heart in the mouse MI model. This ...
      Read Full Article
    12. Evaluating the Effects of Maternal Alcohol Consumption on Murine Fetal Brain Vasculature Using Optical Coherence Tomography

      Evaluating the Effects of Maternal Alcohol Consumption on Murine Fetal Brain Vasculature Using Optical Coherence Tomography
      Prenatal alcohol exposure (PAE) can result in a range of anomalies including brain and behavioral dysfunctions, collectively termed fetal alcohol spectrum disorder (FASD). PAE during the 1 st and 2 nd trimester is common, and research in animal models has documented significant neural developmental deficits associated with PAE during this period. However, little is known about the immediate effects of PAE on fetal brain vasculature. In this study, we used ...
      Read Full Article
    13. Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography

      Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography
      Phase-sensitive optical coherence elastography (PhS-OCE) is an emerging optical technique to quantify soft-tissue biomechanical properties. We implemented a common-path OCT design to enhance displacement sensitivity and optical phase stability for dynamic elastography imaging. The background phase stability was greater in common-path PhS-OCE (0.24 0.07nm) than conventional PhS-OCE (1.60 0.11m). The coefficient of variation for surface displacement measurements using conventional PhS-OCE averaged 11% versus 2% for common-path ...
      Read Full Article
    14. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study

      Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study
      Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from ...
      Read Full Article
    15. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography

      Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography
      Embryogenesis is regulated by numerous changes in mechanical properties of the cellular microenvironment. Thus, studying embryonic mechanophysiology can provide a more thorough perspective of embryonic development, potentially improving early detection of congenital abnormalities as well as evaluating and developing therapeutic interventions. A number of methods and techniques have been used to study cellular biomechanical properties during embryogenesis. While some of these techniques are invasive or involve the use of external ...
      Read Full Article
    16. Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases

      Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases
      An excitation force (internal or external) and phase-sensitive optical coherence elastography (OCE) system, used in conjunction with a data analyzing algorithm, is capable of measuring and quantifying biomechanical parameters of tissues in situ and in vivo. The method was approbated and demonstrated on an example of the system that combines a pulsed ultrasound system capable of producing an acoustic radiation force on the crystalline lens surface and a phase-sensitive optical ...
      Read Full Article
    17. 1-15 of 51 1 2 3 4 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Manmohan Singh

    Manmohan Singh

    Manmohan Singh is at the University of Houston, Department of Biomedical Engineering.