1. Kirill V. Larin

    0 Comments Leave a Comment

    1-15 of 170 1 2 3 4 ... 10 11 12 »
    1. Mentioned In 170 Articles

    2. Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography

      Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography
      In this study, we investigated the relationship between the biomechanical properties of the crystalline lens and intraocular pressure (IOP) using a confocal acoustic radiation force (ARF) and phase-sensitive optical coherence elastography (OCE) system. ARF induced a small displacement at the apex of porcine lenses in situ at various artificially controlled IOPs. Maximum displacement, relaxation rate, and Youngs modulus were utilized to assess the stiffness of the crystalline lens. The results ...
      Read Full Article
    3. Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues

      Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues
      Accurate measurements of microelastic properties of soft tissues in-vivo using optical coherence elastography can be affected by motion artifacts caused by cardiac and respiratory cycles. This problem can be overcome using a multielement ultrasound transducer probe where each ultrasound transducer is capable of generating acoustic radiation force (ARF) and, therefore, creating shear waves in tissue. These shear waves, produced during the phase of cardiac and respiratory cycles when tissues are ...
      Read Full Article
    4. Modified wavelength scanning interferometry for simultaneous tomography and topography of the cornea with Fourier domain optical coherence tomography

      Modified wavelength scanning interferometry for simultaneous tomography and topography of the cornea with Fourier domain optical coherence tomography
      Visual acuity is dependent on corneal shape and size. A minor variation in surface geometry can cause a deformation of corneal geometry, which affects its optical performance. In this work we demonstrate an algorithm for the simultaneous measurement of corneal tomography and topography with a traditional point-scanning Fourier domain optical coherence tomography (FD-OCT) system. A modified wavelength scanning interferometry (mWSI) algorithm enabled topographical evaluation of the surface with nanometer-scale resolution ...
      Read Full Article
    5. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography

      Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography
      Purpose To quantify the effects of the hydration state on the Young's modulus of the cornea . Setting Biomedical Optics Laboratory, University of Houston, Houston, Texas, USA. Design Experimental study. Methods Noncontact, dynamic optical coherence elastography (OCE) measurements were taken of in situ rabbit corneas in the whole eyeglobe configuration (n = 10) and at an artificially controlled intraocular pressure of 15 mm Hg. Baseline OCE measurements were taken by topically ...
      Read Full Article
    6. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography

      Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography
      SIGNIFICANCE Measured corneal biomechanical properties are driven by intraocular pressure, tissue thickness, and inherent material properties. We demonstrate tissue thickness as an important factor in the measurement of corneal biomechanics that can confound short-term effects due to UV riboflavin cross-linking (CXL) treatment. PURPOSE We isolate the effects of tissue thickness on the measured corneal biomechanical properties using optical coherence elastography by experimentally altering the tissue hydration state and stiffness. METHODS ...
      Read Full Article
    7. Quantifying changes in lens biomechanical properties due to cold cataract with optical coherence elastography

      Quantifying changes in lens biomechanical properties due to cold cataract with optical coherence elastography
      Cataract is the most prevalent cause of visual impairment worldwide. Cataracts can be formed due to trauma, radiation, drug abuse, or low temperatures. Thus, early detection of cataract can be immensely helpful for preserving visual acuity by ensuring that the appropriate therapeutic procedures are performed at earlier stages of disease onset and progression. In this work, we utilized a phase-sensitive optical coherence elastography (OCE) system to quantify changes in biomechanical ...
      Read Full Article
    8. Biomechanical assessment of myocardial infarction using optical coherence elastography

      Biomechanical assessment of myocardial infarction using optical coherence elastography
      Myocardial infarction (MI) leads to cardiomyocyte loss, impaired cardiac function, and heart failure. Molecular genetic analyses of myocardium in mouse models of ischemic heart disease have provided great insight into the mechanisms of heart regeneration, which is promising for novel therapies after MI. Although biomechanical factors are considered an important aspect in cardiomyocyte proliferation, there are limited methods for mechanical assessment of the heart in the mouse MI model. This ...
      Read Full Article
    9. Evaluating the Effects of Maternal Alcohol Consumption on Murine Fetal Brain Vasculature Using Optical Coherence Tomography

      Evaluating the Effects of Maternal Alcohol Consumption on Murine Fetal Brain Vasculature Using Optical Coherence Tomography
      Prenatal alcohol exposure (PAE) can result in a range of anomalies including brain and behavioral dysfunctions, collectively termed fetal alcohol spectrum disorder (FASD). PAE during the 1 st and 2 nd trimester is common, and research in animal models has documented significant neural developmental deficits associated with PAE during this period. However, little is known about the immediate effects of PAE on fetal brain vasculature. In this study, we used ...
      Read Full Article
    10. Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography

      Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography
      Phase-sensitive optical coherence elastography (PhS-OCE) is an emerging optical technique to quantify soft-tissue biomechanical properties. We implemented a common-path OCT design to enhance displacement sensitivity and optical phase stability for dynamic elastography imaging. The background phase stability was greater in common-path PhS-OCE (0.24 0.07nm) than conventional PhS-OCE (1.60 0.11m). The coefficient of variation for surface displacement measurements using conventional PhS-OCE averaged 11% versus 2% for common-path ...
      Read Full Article
    11. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study

      Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study
      Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from ...
      Read Full Article
    12. 1-15 of 170 1 2 3 4 ... 10 11 12 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Kirill V. Larin

    Kirill V. Larin

    Kirill V. Larin is Assistant Professor of Biomedical Engineering at the University of Houston, Houston, TX. His research interests focuses on development and application of OCT for noninvasive and nondestructive imaging and diagnostics of tissues and cells. Larin has authored more than 40 peer-reviewed journal publications and chapters in two textbooks on Biomedical Optics. He is recipient of Boris Yeltsin Presidential Award, Wallace Coulter Young Investigator Translation Award, Office of Naval Research Young Investigator Award, and Outstanding Young Investigator Award from the Houston Society for Engineers in Medicine and Biology.

  3. Quotes

    1. When the heart develops, it becomes stiffer as required for ability to contract and pump blood...So the question is - does it become stiff because it's contracting, or is it stiff to begin with because it is genetically predefined?
      In Understanding congenital heart defects to prevent them
    2. We will create this hybrid microscope putting these two powerful technologies together. OCT will image the development of the neural tube while at the same time, Brillouin spectroscopy will probe its mechanical properties. We will be imaging and sensing at the same time...If we find out what causes the tube to close, what is exactly happening, we can develop new drug treatments for at-risk embryos...It's still one of the great mysteries of life, no one on earth knows how this happens and that is really exciting to us, because we will be the ones to find out.
      In Watching an embryo's neural tube close
    3. Today about one million people suffer heart attacks every year, and there is currently no cure for the resulting cardiac tissue scarring...We are working to develop ways to regenerate heart tissue and our research works to measure the mechanical properties to determine if the heart is healing in response to therapies.
      In Biomechanical mapping method aids development of therapies for damaged heart tissue
    4. Experiments have shown that tissue from newborn mammalian hearts can completely regenerate, but with age this regeneration capability diminishes...Martin's group is working on ways to manipulate these molecular pathways in a way that stimulates the adult heart tissue to repair itself.
      In Biomechanical mapping method aids development of therapies for damaged heart tissue
    5. We are using OCT to image mouse and rat embryos, looking at video taken about seven days after conception, out of a 20-day typical mammalian pregnancy...this way, we are able to capture video of the embryonic heart before it begins beating, and a day later we can see the heart beginning to form in the shape of a tube and see whether or not the chambers are contracting. Then, we begin to see blood distribution and the heart rate.
      In The Embryonic Heart: Imaging Life as it Happens - University of Houston Professor Captures Video of Heart Before it Begins to Beat (Video Snippet)
    6. Our primary objective is to develop noninvasive, early detection methods to diagnose various diseases.
      In U. Houston professor expands Optics research