1. Kirill V. Larin

    0 Comments Leave a Comment

    1-15 of 164 1 2 3 4 ... 9 10 11 »
    1. Mentioned In 164 Articles

    2. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography

      Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography
      SIGNIFICANCE Measured corneal biomechanical properties are driven by intraocular pressure, tissue thickness, and inherent material properties. We demonstrate tissue thickness as an important factor in the measurement of corneal biomechanics that can confound short-term effects due to UV riboflavin cross-linking (CXL) treatment. PURPOSE We isolate the effects of tissue thickness on the measured corneal biomechanical properties using optical coherence elastography by experimentally altering the tissue hydration state and stiffness. METHODS ...
      Read Full Article
    3. Quantifying changes in lens biomechanical properties due to cold cataract with optical coherence elastography

      Quantifying changes in lens biomechanical properties due to cold cataract with optical coherence elastography
      Cataract is the most prevalent cause of visual impairment worldwide. Cataracts can be formed due to trauma, radiation, drug abuse, or low temperatures. Thus, early detection of cataract can be immensely helpful for preserving visual acuity by ensuring that the appropriate therapeutic procedures are performed at earlier stages of disease onset and progression. In this work, we utilized a phase-sensitive optical coherence elastography (OCE) system to quantify changes in biomechanical ...
      Read Full Article
    4. Biomechanical assessment of myocardial infarction using optical coherence elastography

      Biomechanical assessment of myocardial infarction using optical coherence elastography
      Myocardial infarction (MI) leads to cardiomyocyte loss, impaired cardiac function, and heart failure. Molecular genetic analyses of myocardium in mouse models of ischemic heart disease have provided great insight into the mechanisms of heart regeneration, which is promising for novel therapies after MI. Although biomechanical factors are considered an important aspect in cardiomyocyte proliferation, there are limited methods for mechanical assessment of the heart in the mouse MI model. This ...
      Read Full Article
    5. Evaluating the Effects of Maternal Alcohol Consumption on Murine Fetal Brain Vasculature Using Optical Coherence Tomography

      Evaluating the Effects of Maternal Alcohol Consumption on Murine Fetal Brain Vasculature Using Optical Coherence Tomography
      Prenatal alcohol exposure (PAE) can result in a range of anomalies including brain and behavioral dysfunctions, collectively termed fetal alcohol spectrum disorder (FASD). PAE during the 1 st and 2 nd trimester is common, and research in animal models has documented significant neural developmental deficits associated with PAE during this period. However, little is known about the immediate effects of PAE on fetal brain vasculature. In this study, we used ...
      Read Full Article
    6. Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography

      Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography
      Phase-sensitive optical coherence elastography (PhS-OCE) is an emerging optical technique to quantify soft-tissue biomechanical properties. We implemented a common-path OCT design to enhance displacement sensitivity and optical phase stability for dynamic elastography imaging. The background phase stability was greater in common-path PhS-OCE (0.24 0.07nm) than conventional PhS-OCE (1.60 0.11m). The coefficient of variation for surface displacement measurements using conventional PhS-OCE averaged 11% versus 2% for common-path ...
      Read Full Article
    7. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study

      Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study
      Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from ...
      Read Full Article
    8. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography

      Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography
      Embryogenesis is regulated by numerous changes in mechanical properties of the cellular microenvironment. Thus, studying embryonic mechanophysiology can provide a more thorough perspective of embryonic development, potentially improving early detection of congenital abnormalities as well as evaluating and developing therapeutic interventions. A number of methods and techniques have been used to study cellular biomechanical properties during embryogenesis. While some of these techniques are invasive or involve the use of external ...
      Read Full Article
    9. Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases

      Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases
      An excitation force (internal or external) and phase-sensitive optical coherence elastography (OCE) system, used in conjunction with a data analyzing algorithm, is capable of measuring and quantifying biomechanical parameters of tissues in situ and in vivo. The method was approbated and demonstrated on an example of the system that combines a pulsed ultrasound system capable of producing an acoustic radiation force on the crystalline lens surface and a phase-sensitive optical ...
      Read Full Article
    10. Quantifying the effects of UV-A/riboflavin crosslinking on the elastic anisotropy and hysteresis of the porcine cornea by noncontact optical coherence elastography

      Quantifying the effects of UV-A/riboflavin crosslinking on the elastic anisotropy and hysteresis of the porcine cornea by noncontact optical coherence elastography
      The collagen fibril orientation of the cornea can provide critical information about cornea tissue health because diseases such as keratoconus and therapeutic interventions such as UV-A/riboflavin corneal collagen crosslinking (CXL) can alter the ultrastructural arrangement of collagen fibrils. Here, we quantify the elastic anisotropy and hysteresis of in situ porcine corneas as a function of intraocular pressure (IOP) with noncontact optical coherence elastography. Moreover, the effects of UV-A riboflavin ...
      Read Full Article
    11. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument

      Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument
      Current clinical tools provide critical information about ocular health such as intraocular pressure (IOP). However, they lack the ability to quantify tissue material properties, which are potent markers for ocular tissue health and integrity. We describe a single instrument to measure the eye-globe IOP, quantify corneal biomechanical properties, and measure corneal geometry with a technique termed applanation optical coherence elastography (Appl-OCE). An ultrafast OCT system enabled visualization of corneal dynamics ...
      Read Full Article
    12. Evaluation of dermal fillers with noncontact optical coherence elastography

      Evaluation of dermal fillers with noncontact optical coherence elastography
      Over 2 million dermal filler procedures are performed each year in the USA alone, and this figure is only expected to increase as the aging population continues to grow. Dermal filler treatments can last from a few months to years depending on the type of filler and its placement. Although adverse reactions are rare, they can be quite severe due to ischemic events and filler migration. Previously, techniques such as ...
      Read Full Article
    13. 1-15 of 164 1 2 3 4 ... 9 10 11 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Kirill V. Larin

    Kirill V. Larin

    Kirill V. Larin is Assistant Professor of Biomedical Engineering at the University of Houston, Houston, TX. His research interests focuses on development and application of OCT for noninvasive and nondestructive imaging and diagnostics of tissues and cells. Larin has authored more than 40 peer-reviewed journal publications and chapters in two textbooks on Biomedical Optics. He is recipient of Boris Yeltsin Presidential Award, Wallace Coulter Young Investigator Translation Award, Office of Naval Research Young Investigator Award, and Outstanding Young Investigator Award from the Houston Society for Engineers in Medicine and Biology.

  3. Quotes

    1. Today about one million people suffer heart attacks every year, and there is currently no cure for the resulting cardiac tissue scarring...We are working to develop ways to regenerate heart tissue and our research works to measure the mechanical properties to determine if the heart is healing in response to therapies.
      In Biomechanical mapping method aids development of therapies for damaged heart tissue
    2. Experiments have shown that tissue from newborn mammalian hearts can completely regenerate, but with age this regeneration capability diminishes...Martin's group is working on ways to manipulate these molecular pathways in a way that stimulates the adult heart tissue to repair itself.
      In Biomechanical mapping method aids development of therapies for damaged heart tissue
    3. We are using OCT to image mouse and rat embryos, looking at video taken about seven days after conception, out of a 20-day typical mammalian pregnancy...this way, we are able to capture video of the embryonic heart before it begins beating, and a day later we can see the heart beginning to form in the shape of a tube and see whether or not the chambers are contracting. Then, we begin to see blood distribution and the heart rate.
      In The Embryonic Heart: Imaging Life as it Happens - University of Houston Professor Captures Video of Heart Before it Begins to Beat (Video Snippet)
    4. Our primary objective is to develop noninvasive, early detection methods to diagnose various diseases.
      In U. Houston professor expands Optics research