1. James G. Fujimoto

    0 Comments Leave a Comment

    1-15 of 362 1 2 3 4 ... 22 23 24 »
    1. Mentioned In 362 Articles

    2. Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors

      Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors
      Purpose To evaluate tumor vasculature with optical coherence tomography angiography (OCTA) in malignant iris melanomas and benign iris lesions. Design Cross-sectional observational clinical study. Participants Patients with iris lesions and healthy volunteers. Methods Eyes were imaged using OCTA systems operating at 1050- and 840-nm wavelengths. Three-dimensional OCTA scans were acquired. Iris melanoma patients treated with radiation therapy were imaged again after I-125 plaque brachytherapy at 6 and 18 months. Main ...
      Read Full Article
    3. Volumetric Mapping of Barrett’s Esophagus and Dysplasia With en face Optical Coherence Tomography Tethered Capsule

      Volumetric Mapping of Barrett’s Esophagus and Dysplasia With en face Optical Coherence Tomography Tethered Capsule
      To the Editor: Dysplasia in Barretts Esophagus (BE) is patchy ( 1 ) and sometimes missed by random biopsies. Optical coherence tomography (OCT) can image large areas of the esophagus; however, slow imaging speeds in earlier studies limited visualization to cross-sections. Cross-sectional OCT detected high-grade dysplasia with sensitivity / specificity of ~80 % ( 2 , 3 ). Tethered OCT capsules were demonstrated for cross-sectional imaging in unsedated screening to detect BE ( 4 , 5 ). Our group recently ...
      Read Full Article
    4. Analysis of Scleral Feeder Vessel in Myopic Choroidal Neovascularization Using Optical Coherence Tomography Angiography

      Analysis of Scleral Feeder Vessel in Myopic Choroidal Neovascularization Using Optical Coherence Tomography Angiography
      To describe the appearance of a scleral-derived feeder vessel in a highly myopic eye with secondary choroidal neovascularization (CNV) as visualized on both en face high-speed swept-source (SS) optical coherence tomography angiography (OCTA) prototype, and a commercially available spectral-domain (SD) OCTA, with the corresponding en face and cross-sectional structural OCT images. In this case report, a 60-year-old white male presented with high myopia and secondary CNV in the right eye ...
      Read Full Article
    5. SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS CHORIOCAPILLARIS ALTERATIONS IN EYES WITH NASCENT GEOGRAPHIC ATROPHY AND DRUSEN-ASSOCIATED GEOGRAPHIC ATROPHY

      SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS CHORIOCAPILLARIS ALTERATIONS IN EYES WITH NASCENT GEOGRAPHIC ATROPHY AND DRUSEN-ASSOCIATED GEOGRAPHIC ATROPHY
      Purpose: To investigate choriocapillaris (CC) alteration in patients with nascent geographic atrophy (nGA) and/or drusen-associated geographic atrophy (DAGA) using swept-source optical coherence tomography angiography (OCTA). Methods: A 1,050-nm wavelength, 400 kHz A-scan rate swept-source optical coherence tomography prototype was used to perform volumetric swept-source optical coherence tomography angiography over 6 mm x 6 mm fields of view in patients with nGA and/or DAGA. The resulting optical coherence ...
      Read Full Article
    6. TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis

      TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis
      Purpose: Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Methods: Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using ...
      Read Full Article
    7. AN AUTOMATIC, INTERCAPILLARY AREA-BASED ALGORITHM FOR QUANTIFYING DIABETES-RELATED CAPILLARY DROPOUT USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY

      AN AUTOMATIC, INTERCAPILLARY AREA-BASED ALGORITHM FOR QUANTIFYING DIABETES-RELATED CAPILLARY DROPOUT USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY
      Purpose: To develop a robust, sensitive, and fully automatic algorithm to quantify diabetes-related capillary dropout using optical coherence tomography (OCT) angiography (OCTA). Methods: A 1,050-nm wavelength, 400 kHz A-scan rate swept-source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography imaging over 3 mm x 3 mm fields in normal controls (n = 5), patients with diabetes without diabetic retinopathy (DR) (n = 7), patients with nonproliferative ...
      Read Full Article
    8. OSA Centennial Snapshots: OCT and the Flowering of Biophotonics

      OSA Centennial Snapshots: OCT and the Flowering of Biophotonics
      The birth, commercialization and ultimate impact of OCT stand out as landmark accomplishments even amid the abundant advances in biophotonics during the 1980s and 1990s. Twenty-five years ago this month, the editors of Science accepted for publication a research paper titled Optical Coherence Tomography. That three-word phrase (and its punchier abbreviation, OCT) heralded a revolution in ophthalmologyone that would spawn a billion-dollar-a-year market, and affect millions of people.
      Read Full Article
    9. Visualizing the Choriocapillaris Under Drusen: Comparing 1050-nm Swept-Source Versus 840-nm Spectral-Domain Optical Coherence Tomography Angiography

      Visualizing the Choriocapillaris Under Drusen: Comparing 1050-nm Swept-Source Versus 840-nm Spectral-Domain Optical Coherence Tomography Angiography
      Purpose : To investigate the appearance of choriocapillaris (CC) flow under drusen by comparing long-wavelength (1050 nm) swept-source optical coherence tomography (SS-OCT) angiography with shorter-wavelength (840 nm) spectral-domain (SD) OCT angiography. Methods : Patients with drusen imaged on both devices on the same day were selected and graded. Ambiguous OCT angiography (OCTA) signal loss was defined as low OCTA signal on the en face OCTA CC image that also had low OCT ...
      Read Full Article
    10. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY

      ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY
      Purpose: To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. Methods: The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes ...
      Read Full Article
    11. Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography

      Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography
      Purpose To compare visualization of choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD) using an ultrahigh-speed swept-source (SS) optical coherence tomography angiography (OCTA) prototype vs a spectral-domain (SD) OCTA device. Design Comparative analysis of diagnostic instruments. Methods Patients were prospectively recruited to be imaged on SD OCT and SS OCT devices on the same day. The SD OCT device employed is the RTVue Avanti (Optovue, Inc, Fremont, California, USA ...
      Read Full Article
    12. Advanced OCT: Making Waves in the Market

      Advanced OCT: Making Waves in the Market
      Optical coherence tomography (OCT) is poised for further growth, thanks to a new wave of progress in applications with commercial potential. Heres a cross-sectional survey of OCT advances making their way from concept to market. This year marks the 25th anniversary of the celebrated initial optical coherence tomography (OCT) paper in Science by OSA Fellow James Fujimotos group at the Massachusetts Institute of Technology (Cambridge, Mass., USA). Five years later ...
      Read Full Article
    13. Diagnosis and Follow-Up of Nonexudative Choroidal Neovascularization With Multiple Optical Coherence Tomography Angiography Devices: A Case Report

      Diagnosis and Follow-Up of Nonexudative Choroidal Neovascularization With Multiple Optical Coherence Tomography Angiography Devices: A Case Report
      Nonexudative choroidal neovascularization (CNV) is a new phenomenon that has only recently been described in the literature with the advent of optical coherence tomography angiography (OCTA) imaging. The authors present a 1-year longitudinal follow-up of a nonexudative CNV lesion secondary to age-related macular degeneration. This report describes the appearance of the lesion on two commercially available spectral-domain OCTA devices and one prototype swept-source OCTA device. Management of these cases is ...
      Read Full Article
    14. Foreword: 25 Years of Optical Coherence Tomography

      Foreword: 25 Years of Optical Coherence Tomography
      This special issue commemorates the 25th anniversary of the development of optical coherence tomography (OCT). OCT has had a transformative impact in the field of ophthalmology and vision research, contributing to fundamental understanding of disease pathogenesis, drug discovery and development, and everyday clinical decision making in all ophthalmic subspecialties. The role of OCT in research and clinical care continues to accelerate, as judged by the cumulative number of publications in ...
      Read Full Article
    15. The Development, Commercialization, and Impact of Optical Coherence Tomography

      The Development, Commercialization, and Impact of Optical Coherence Tomography
      This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also ...
      Read Full Article
    16. 1-15 of 362 1 2 3 4 ... 22 23 24 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About James G. Fujimoto

    James G. Fujimoto

    James. G. Fujimoto is a principal investigator in the Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT). He received his S.B., S.M., and Ph.D. in electrical engineering from MIT in 1979, 1981, and 1984 respectively. He joined the MIT faculty in 1985 as Assistant Professor of Electrical Engineering. Since 1994, he has been Professor of Electrical Engineering at MIT and Adjunct Professor of Ophthalmology at Tufts University.

    Professor Fujimoto's area of research involves the development and application of femtosecond laser technology, studies of ultrafast phenomena, and laser medicine and surgery. His research group in RLE and collaborators invented optical coherence tomography and pioneered its development. 

    James G Fujimoto has published over 250 journal articles, is editor or author of 5 books, and holds numerous U.S. patents for his discoveries. He is a fellow of the National Academy of Engineering and the American Association for the Advancement of Science. Among his many honors include the 1999 Discover Magazine Award for Technological Innovation and the 2001 Rank Prize in Optoelectronics.

  3. Quotes

    1. The newest swept-source OCT has the advantage that the light source frequency sweep range and repetition rate can be adjusted to tailor the resolution, imaging range, and axial scan repetition rate for the specific imaging application.
      In Swept-source OCT and glaucoma
    2. We are now approaching a point with OCT where ophthalmologists have a view of the retina that is similar to that of pathologists...In the future, functional imaging will make subtle changes in pathology more measurable, and these advances will enhance sensitivity when monitoring disease progression and response to therapy.
      In How hardware, software advances expand OCT capabilities
    3. Hand-held instruments can enable screening a wider population outside the traditional points of care...The hand-held platform allows the diagnosis or screening to be performed in a much wider range of settings...Developing screening methods that are accessible to the larger population could significantly reduce unnecessary vision loss.
      In Early Detection of Blinding Eye Disease Could be as Easy as Scanning a Barcode
    4. Hand-held instruments can enable screening a wider population outside the traditional points of care.
      In Early Detection of Blinding Eye Disease Could be as Easy as Scanning a Barcode
    5. The hand-held platform allows the diagnosis or screening to be performed in a much wider range of settings.
      In Early Detection of Blinding Eye Disease Could be as Easy as Scanning a Barcode
    6. Partnership between academics and industry was critical for the development of OCT and is a powerful approach for translating new scientific discoveries into real world clinical practice...Clinical researchers on our team as well as other clinicians at leading international medical centers worked with the early OCT technology, exploring new clinical applications and blazing a trail that the broader clinical community could follow. This interdisciplinary approach was key to the success of this technology.
      In MIT Researchers Dr. James Fujimoto and Mr. Eric Swanson Awarded the 2012 António Champalimaud Vision Award
    7. OCT has the advantage that it can image 1 or 2 millimeters below the surface with high resolution, noninvasively...Increased imaging speed is important; it allows broader coverage or improved resolution...the concept is not that the technology is trying to diagnose the cancer per se, since excisional biopsies do that well...Instead, it is coupling 3D OCT scanning across the sampling area with standard biopsies.
      In Optical Tomography May Aid 3D Cancer Diagnostics
    8. Ultrahigh-speed imaging is important because it enables the acquisition of large three-dimensional volumetric data sets with micron-scale resolution.
      In New High-speed 3-D Imaging System Holds Potential for Improved Cancer Screening
    9. Excisional biopsy is one of the gold standards for the diagnosis of cancer, but is a sampling procedure. If the biopsy is taken in a normal region of tissue and misses the cancer, the biopsy result is negative although the patient still has cancer.
      In New High-speed 3-D Imaging System Holds Potential for Improved Cancer Screening
    10. This device development is one of the major technical challenges in endoscopic OCT because probes must be small enough so that they can be introduced into the body, but still be able to scan an optical beam at high speeds...Increasing imaging speeds has also been an important research objective because high-resolution volumetric imaging requires very large amounts of data in order to cover appreciable regions of tissue, so rapid image acquisition rates are a powerful advantage.
      In New High-speed 3-D Imaging System Holds Potential for Improved Cancer Screening