1. Guillermo J. Tearney

    0 Comments Leave a Comment

    241-255 of 264 « 1 2 ... 14 15 16 17 18 »
    1. Mentioned In 264 Articles

    2. Evaluation of intracoronary stenting by intravascular optical coherence tomography

      Wellman Laboratories of Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA Background: Conventional contrast cineangiography and intravascular ultrasound (IVUS) provide a limited definition of vessel microstructure and are unable to evaluate dissection, tissue prolapse, and stent apposition on a size scale less than 100 µm. Objective: To evaluate the use of intravascular optical coherence tomography (OCT) to assess the coronary arteries in patients undergoing coronary stenting. Methods ...
      Read Full Article
    3. Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods

      Abstract  Acute coronary events such as myocardial infarction are frequently caused by the rupture of unstable atherosclerotic plaque. Collagen plays a key role in determining plaque stability. Methods to measure plaque collagen content are invaluable in detecting unstable atherosclerotic plaques. Recently, novel coherent laser-based imaging techniques, such as polarization-sensitive optical coherence tomography (PSOCT) and laser speckle imaging (LSI) have been investigated, and they provide a wealth of information related to ...
      Read Full Article
    4. Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography.

      A nonreciprocal fiber-optic interferometer is demonstrated in an optical coherence tomography (OCT) system. The increased power efficiency of this system provides a 4.1-dB advantage over standard Michelson implementations. In addition, a new linear-scanning fiber-optic catheter is demonstrated that avoids the rotary optical junction that is required in circumferential scanning systems. These advancements have permitted the clinical implementation of OCT imaging in the human gastrointestinal tract. PMID: 18071562 [PubMed - in ...
      Read Full Article
    5. Comprehensive volumetric optical microscopy in vivo

      Comprehensive volumetric optical microscopy in vivo
      Comprehensive volumetric microscopy of epithelial, mucosal and endothelial tissues in living human patients would have a profound impact in medicine by enabling diagnostic imaging at the cellular level over large surface areas. Considering the vast area of these tissues with respect to the desired sampling interval, achieving this goal requires rapid sampling. Although noninvasive diagnostic technologies are preferred, many applications could be served by minimally invasive instruments capable of accessing ...
      Read Full Article
    6. Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett’s Esophagus

      Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett’s Esophagus
      ...Hospital, Harvard Medical School, Boston + Corresponding Author Information Address requests for reprints to: Guillermo J. Tearney, MD, PhD, Associate Professor of Pathology, Harvard Medical School, Wellman Center for Ph...
      Read Full Article
    7. Fiber optic imaging endoscope interferometer with at least one faraday rotator

      Fiber optic imaging endoscope interferometer with at least one faraday rotator
      An imaging system for performing optical coherence tomography includes an optical radiation source; a reference optical reflector; a first optical path leading to the reference optical reflector; and a second optical path coupled to an endoscopic unit. The endoscopic unit preferably includes an elongated housing defining a bore; a rotatable single mode optical fiber having a proximal end and a distal end positioned within and extending the length of the ...
      Read Full Article
    8. Methods and apparatus for forward-directed optical scanning instruments

      Methods and apparatus for forward-directed optical scanning instruments
      An imaging system for performing forward scanning imaging for application to therapeutic and diagnostic devises used in medical procedures. The imaging system includes forward directed optical coherence tomography (OCT), and non-retroreflected forward scanning OCT. Also interferometric imaging and ranging techniques and fluorescent, Raman, two-photon, and diffuse wave imaging can be used. The forward scanning mechanisms include a cam attached to a motor, pneumatic devices, a pivoting device, piezoelectric transducers, electrostatic ...
      Read Full Article
    9. 241-255 of 264 « 1 2 ... 14 15 16 17 18 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Guillermo J. Tearney

    Guillermo J. Tearney

    Guillermo Tearney M.D., Ph.D. is Professor of Pathology at Harvard Medical School, an Affiliated Faculty member of the Harvard-MIT Division of Health Sciences and Technology (HST), and the Associate Director of the Wellman Center for Photomedicine at the Massachusetts Genera lHospital. Dr. Tearney received his MD magna cum laude from Harvard Medical School and received his PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology.

     

    Dr. Tearney’s research interests are focused on the development and clinical validation of non-invasive, high-resolution optical imaging methods for disease diagnosis. Dr. Tearney's lab was the first to perform human imaging in the coronary arteries and gastrointestinal tract in vivo with Optical Coherence Tomography (OCT), which provides cross-sectional images of tissue architectural microstructure at a resolution of 10 μm. He has also conducted many of the seminal studies validating OCT and is considered an expert on OCT image interpretation. Recently, Dr. Tearney's lab has invented a next generation OCT technology, termed μOCT, which has a resolution of 1 μm and is capable of imaging cells and sub cellular structures in the coronary wall. Dr. Tearney has also developed several other technologies, including a confocal endomicroscope capable of imaging the entire esophagus, an ultraminiature three-dimensional endoscope, a highly efficient form of near field scanning optical microscopy (NSOM), and novel fluorescence spectroscopy and multimodality imaging techniques. He has an active program in Raman spectroscopy and has conducted the first intracoronary Raman in vivo. Dr. Tearney is co-editor of The Handbook of Optical Coherence Tomorgraphy and has written over 170 peer-reviewed publications, including papers that have been highlighted on the covers of Science, Nature Medicine, Circulation, Gastroenterology, and Journal of American College of Cardiology.

     

    Dr. Tearney’s work extends beyond his laboratory at MGH, many of his technologies are being produced commercially and he has founded the International Working Group on Intracoronary OCT Standardization and Validation, a group that is dedicated to establishing standards to ensure the widespread adoption of this imaging technology

  3. Quotes

    1. We’ve done a lot of benchtop imaging with micro-OCT, but this is the first time we’ve been able to use it in people...It’s unprecedented to see this pathophysiology dynamically in living patients. It will allow us to begin to understand things we never even knew were there.
      In Innovative tool gives researchers new look at the nasal airway in CF patients
    2. Coronary imaging has rapidly evolved over the past decade and has become an important part of the practice of diagnostic and interventional cardiology...I’m looking forward to once again collaborating with Infraredx who pioneered the development of the only FDA-cleared dual-modality NIRS-IVUS device which is playing a vital role in furthering our understanding of the vulnerable plaque and its correlation to future coronary events. Our partnership will focus on ways to harness the collective value of current imaging modalities in order to provide clinicians with more comprehensive information on the coronary vasculature to help guide treatment decisions.
      In Infraredx Announces Research Collaboration with Massachusetts General Hospital to Explore New Generation of Cardiovascular Imaging Devices
    3. With our procedure, instead you swallow a capsule. And that capsule captures these microscopic images while you are in the living person. Without taking the tissue out. Not only that but it gathers the microscopic images of the entire esophagus, not just one little spot. So we get a much better understanding and a much better picture of the detailed structure of the esophagus and we are able to get a much better diagnoses.
      In Cancer detection as easy as popping a pill (video)
    4. The images produced have been some of the best we have seen of the esophagus...We originally were concerned that we might miss a lot of data because of the small size of the capsule; but we were surprised to find that, once the pill has been swallowed, it is firmly ‘grasped’ by the esophagus, allowing complete microscopic imaging of the entire wall. Other methods we have tried can compress the esophageal lining, making it difficult to obtain accurate, three-dimensional pictures. The capsule device provides additional key diagnostic information by making it possible to see the surface structure in greater detail.
      In Pill-sized device rivals endoscopy: Novel imaging system screens for Barrett’s esophagus in minutes
    5. OFDI imaging with laser marking has the potential to improve the diagnostic paradigm for patients suspected of having Barrett's esophagus, one of the most common precursors to esophageal cancer... There is a large and growing unmet need to improve the gastroenterologist's ability to detect, diagnose and make critical treatment decisions for patients with Barrett's esophagus, and this technological advancement may significantly improve this paradigm. Provided these results can be confirmed in an ongoing, larger study, OFDI-based guided biopsy may soon be able to help clinicians make more precise and rapid diagnoses while taking fewer, but more targeted, biopsies allowing patients to receive more tailored management for diseases like Barrett's esophagus.
      In NinePoint Medical Announces New Data Presented on Innovative Optical Frequency Domain Imaging Technology at 19th UEGW Meeting
    6. MicroOCT has the contrast and resolution required to investigate the cellular and subcellular components underlying coronary atherosclerosis, the disease that precipitates heart attack...This high level of performance opens up the future possibility of observing these microscopic features in human patients, which has implications for improving the understanding, diagnosis, and therapeutic monitoring of coronary artery disease.
      In A closer look at atherosclerosis: High-res imaging reveals cellular details of coronary arteries
    7. High quality images provided by optical frequency domain imaging – or OFDI – may one day enable physicians to implement routine, less invasive screening procedures for high-risk patients...The ability to perform accurate diagnoses for conditions like Barrett’s esophagus could also provide significant improvements over random biopsies that are currently the standard of care for patients at risk for developing esophageal cancer.
      In NinePoint Medical Licenses 188 Patents and Patent Applications from Massachusetts General Hospital
    8. These results are comparable to what is seen with drug eluting stents in terms of thickness--we did not see a significant hyperplastic injury response.
      In vProtect(TM) Luminal Shield Stabilizes Vulnerable Plaque
    9. The wealth of information that we can now obtain will undoubtedly improve our ability to understand coronary artery disease and may allow cardiologists to diagnose and treat plaque before it leads to serious problems.
      In America wakes up to 3-D human coronary artery imaging