1. Geert Springeling

    0 Comments Leave a Comment

    1-9 of 9
    1. Mentioned In 9 Articles

    2. Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy

      Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy
      Intravascular optical coherence tomography (IV-OCT) has gained widespread use over the past few years, offering highly detailed images of coronary artery pathologies and interventions (1) . In contrast to the cross-sectional view, longitudinal sections and 3-dimensional (3D) renderings are affected by cardiac motion artifacts and undersampling, complicating interpretation and measurements (2) . We developed Heartbeat OCT, a new OCT method that achieves up to 4,000 frames/s imaging speed for isotropically ...
      Read Full Article
    3. Feature Of The Week 12/06/2015: Heartbeat Optical Coherence Tomography

      Feature Of The Week 12/06/2015: Heartbeat Optical Coherence Tomography
      Intravascular optical coherence tomography (IV-OCT) has gained widespread use over the past few years, offering highly detailed images of the coronary artery pathologies and interventions. In contrast to the cross-sectional view, longitudinal sections and three-dimensional (3D) renderings are affected by cardiac motion artifacts and undersampling, complicating interpretation and measurements. We developed Heartbeat OCT, a new OCT method that overcomes these issues. This study aims to demonstrate in vivo Heartbeat OCT ...
      Read Full Article
    4. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography

      Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography
      Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called Heartbeat OCT, combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one ...
      Read Full Article
    5. Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming

      Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming
      Objectives Fibrous cap thickness is the most critical component of plaque stability. Therefore, in vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque rupture. In the context of preoperative planning and perioperative decision making, intracoronary optical coherence tomography imaging can provide a very detailed characterization of the arterial wall structure. However, visual interpretation of the images is laborious, subject to variability, and therefore not ...
      Read Full Article
    6. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging

      Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging
      Intravascular optical coherence tomography (IVOCT) is a well-established method for the high-resolution investigation of atherosclerosis in vivo. Intravascular near-infrared fluorescence (NIRF) imaging is a novel technique for the assessment of molecular processes associated with coronary artery disease. Integration of NIRF and IVOCT technology in a single catheter provides the capability to simultaneously obtain co-localized anatomical and molecular information from the artery wall. Since NIRF signal intensity attenuates as a function ...
      Read Full Article
    7. The impact of Fourier-Domain optical coherence tomography catheter induced motion artefacts on quantitative measurements of a PLLA-based bioresorbable scaffold

      The impact of Fourier-Domain optical coherence tomography catheter induced motion artefacts on quantitative measurements of a PLLA-based bioresorbable scaffold
      Intracoronary Fourier-Domain optical coherence tomography (FD-OCT) enables imaging of the coronary artery within 2-4 seconds, a so far unparalleled speed. Despite such fast data acquisition, cardiac and respiratory motion can cause artefacts due to longitudinal displacement of the catheter within the artery. We studied the influence of longitudinal FD-OCT catheter displacement on serial global lumen and scaffold area measurements in coronary arteries of swine that received PLLA-based bioresorbable scaffolds. In ...
      Read Full Article
    8. Feature Of The Week 6/30/13: Ultrafast Intravascular Optical Coherence Tomography Imaging

      Feature Of The Week 6/30/13: Ultrafast Intravascular Optical Coherence Tomography Imaging
      The fastest commercial intravascular optical coherence tomography (OCT) systems acquire 160 frames/second with 500 lines/frame, and the pullback speed is limited to 40 mm∕s. In this situation, the images are under sampled in the pullback direction: Only 12% of the lumen is sampled because the sampling interval of 250 m is much larger than the transverse resolution, which is approximately 30 m. In clinical situations, the cardiac ...
      Read Full Article
    9. 1-9 of 9
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Geert Springeling

    Geert Springeling

    Geert Springeling is working in Erasmus MC.