1. ESPCI ParisTech

    0 Comments Leave a Comment

    1-15 of 72 1 2 3 4 5 »
    1. Mentioned In 72 Articles

    2. Full-field optical coherence tomography: novel imaging technique for extemporaneous high-resolution analysis of mucosal architecture in human gut biopsies

      Full-field optical coherence tomography: novel imaging technique for extemporaneous high-resolution analysis of mucosal architecture in human gut biopsies
      Full-field optical coherence tomography (FFOCT) is an imaging technique of biological tissue based on tissue light reflectance analysis. We evaluated the feasibility of imaging fresh digestive mucosal biopsies after a quick mounting procedure (5min) using two distinct modalities of FFOCT. In static FFOCT mode, we gained high-resolution images of general gut tissue-specific architecture, such as oesophageal papillae, gastric pits, duodenal villi and colonic crypts. In dynamic FFOCT mode, we imaged ...
      Read Full Article
    3. Full-field optical coherence tomography for the diagnosis of giant cell arteritis

      Full-field optical coherence tomography for the diagnosis of giant cell arteritis
      Histopathological examination of temporal artery biopsy (TAB) remains the gold standard for the diagnosis of giant cell arteritis (GCA) but is associated with essential limitations that emphasize the need for an upgraded pathological process. This study pioneered the use of full-field optical coherence tomography (FF-OCT) for rapid and automated on-site pathological diagnosis of GCA. Sixteen TABs (12 negative and 4 positive for GCA) were selected according to major histopathological criteria ...
      Read Full Article
    4. Curved-field optical coherence tomography: large-field imaging of human corneal cells and nerves

      Curved-field optical coherence tomography: large-field imaging of human corneal cells and nerves
      High-resolution optical imaging methods, such as confocal microscopy and full-field optical coherence tomography, capture flat optical sections of the sample. If the sample is curved, the optical field sections through several sample layers and the view of each layer is reduced. Here we present curved-field optical coherence tomography, capable of capturing optical sections of arbitrary curvature. We test the device on a challenging task of imaging the human cornea in ...
      Read Full Article
    5. Optical Incoherence Tomography: a method to generate tomographic retinal cross-sections with non-interferometric imaging systems

      Optical Incoherence Tomography: a method to generate tomographic retinal cross-sections with non-interferometric imaging systems
      Optical tomographic cross-sectional images of biological samples were made possible by interferometric imaging techniques such as Optical Coherence Tomography (OCT) [1, 2, 3]. Owing to its unprecedented view of the sample, OCT has become a gold standard, namely for human retinal imaging in the clinical environment. In this Letter, we present Optical Incoherence Tomography (OIT): a completely digital method extending the possibility to generate tomographic retinal cross-sections to non-interferometric imaging ...
      Read Full Article
    6. Light-efficient beamsplitter for Fourier-domain full-field optical coherence tomography

      Light-efficient beamsplitter for Fourier-domain full-field optical coherence tomography
      Any full-field optical coherence tomography (FF-OCT) system wastes almost 75% of light, including 50% of the OCT signal, because it uses a 50/50 beamsplitter (BS) in the standard implementation. Here, a design of a light-efficient BS is presented that loses almost no light when implemented in Fourier-domain FF-OCT. It is based on pupil engineering and a small highly asymmetric BS. The presented signal-to-noise ratio (SNR) analysis demonstrates almost four ...
      Read Full Article
    7. Compact and Mobile Full-Field Optical Coherence Tomography Sensor for Subsurface Fingerprint Imaging

      Compact and Mobile Full-Field Optical Coherence Tomography Sensor for Subsurface Fingerprint Imaging
      Conventional fingerprint sensors that are deployed in real-life applications lack the ability to peer inside a finger beyond the external surface. Subsurface information can provide complimentary biometric characteristics associated with the finger. The subsurface fingerprints can also be employed when the quality of the external/surface fingerprints is affected. One of the most promising technologies for imaging below the surface of an external fingerprint is full-field optical coherent tomography (FF-OCT ...
      Read Full Article
    8. Retinal Capillary Plexus Pattern and Density from Fovea to Periphery Measured in Healthy Eyes with Swept-Source Optical Coherence Tomography Angiography

      Retinal Capillary Plexus Pattern and Density from Fovea to Periphery Measured in Healthy Eyes with Swept-Source Optical Coherence Tomography Angiography
      Optical coherence tomography angiography is evolving towards wider fields of view. As single widefield acquisitions have a lower resolution, preventing an accurate segmentation of vascular plexuses in the periphery, we examined the retinal vascularisation from the macula to the periphery in all retinal quadrants, using 33-mm volume scans, to obtain montages with sufficient image resolution up to 11mm from the foveal centre. Images were qualitatively and quantitatively analysed, using C- ...
      Read Full Article
      Mentions: ESPCI ParisTech
    9. Real-time, non-contact, cellular imaging and angiography of human cornea and limbus with common-path Full-field/SD OCT

      Real-time, non-contact, cellular imaging and angiography of human cornea and limbus with common-path Full-field/SD OCT
      In todays clinics, a cellular-resolution view of the cornea can be achieved only with an in vivo confocal microscope (IVCM) in contact with the eye. Here, we present a common-path Full-field/Spectral-domain OCT microscope (FF/SD OCT), which, for the first time, enables cell-detail imaging of the entire ocular surface (central and peripheral cornea, limbus, sclera, tear film) without contact and in real time. The device, that has been successfully ...
      Read Full Article
    10. Curved-Full-Field OCT for high-resolution imaging of living human retina over a large field-of-view

      Curved-Full-Field OCT for high-resolution imaging of living human retina over a large field-of-view
      Allying high-resolution with a large field-of-view (FOV) is of great importance in the fields of biology and medicine [1, 2, 3], but particularly challenging when imaging non-flat living samples such as the human retina. Indeed, high-resolution is normally achieved with adaptive optics (AO) and scanning methods, which considerably reduce the useful FOV and increase the system complexity. An alternative technique is time-domain Full-Field Optical Coherence Tomography (FF-OCT) [4, 5], which ...
      Read Full Article
    11. High-throughput dark-field full-field optical coherence tomography

      High-throughput dark-field full-field optical coherence tomography
      Full-field optical coherence tomography (FF-OCT) can rapidly acquire 2D en face OCT images through a scattering medium. However, the standard interferometer configurations waste almost 75% of light. In addition, specular reflections can saturate the detector, limiting FF-OCT performance. Here, we report on a high-throughput dark-field (HTDF) FF-OCT configuration that efficiently uses the available light budget and allows suppressing specular reflections. Specifically, we demonstrate that images acquired with the HTDF FF-OCT ...
      Read Full Article
    12. High-resolution in-vivo human retinal imaging using full-field OCT with optical stabilization of axial motion

      High-resolution in-vivo human retinal imaging using full-field OCT with optical stabilization of axial motion
      Time-domain full-field OCT (FF-OCT) represents an imaging modality capable of recording high-speed en-face sections of a sample at a given depth. One of the biggest challenges to transfer this technique to image in-vivo human retina is the presence of continuous involuntary head and eye axial motion during image acquisition. In this paper, we demonstrate a solution to this problem by implementing an optical stabilization in an FF-OCT system. This was ...
      Read Full Article
    13. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids

      Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids
      Optical coherence tomography offers astounding opportunities to image the complex structure of living tissue, but lacks functional information. We present dynamic full-field optical coherence tomography to image living human induced pluripotent stem cell-derived retinal organoids non-invasively. Colored images with an endogenous contrast linked to organelle motility are generated, with sub-micrometer spatial resolution and millisecond temporal resolution, opening an avenue to identify specific cell types in living tissue via their function.
      Read Full Article
    14. Modeling of full-field optical coherence tomography in scattering media

      Modeling of full-field optical coherence tomography in scattering media
      We develop a model of full-field optical coherence tomography (FF-OCT) that includes a description of partial temporal and spatial coherence, together with a mean-field scattering theory going beyond the Born approximation. Based on explicit expressions of the FF-OCT signal, we discuss essential features of FF-OCT imaging, such as the influence of partial coherence on the optical transfer function, and on the decay of the signal with depth. We derive the ...
      Read Full Article
      Mentions: ESPCI ParisTech
    15. Distortion matrix concept for deep imaging in optical coherence microscopy

      Distortion matrix concept for deep imaging in optical coherence microscopy
      In optical imaging, light propagation is affected by the inhomogeneities of the medium. Sample-induced aberrations and multiple scattering can strongly degrade the image resolution and contrast. Based on a dynamic correction of the incident and/or reflected wave-fronts, adaptive optics has been employed to compensate for those aberrations. However, it mainly applies to spatiallyinvariant aberrations or to thin aberrating layers. Here, we propose a global and non-invasive approach based on ...
      Read Full Article
    16. Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT

      Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT
      We describe recent technological progress in multimodal en face full-field optical coherence tomography that has allowed detection of slow and fast dynamic processes in the eye. We show that by combining static, dynamic and fluorescence contrasts we can achieve label-free high-resolution imaging of the retina and anterior eye with temporal resolution from milliseconds to several hours, allowing us to probe biological activity at subcellular scales inside 3D bulk tissue. Our ...
      Read Full Article
    17. 1-15 of 72 1 2 3 4 5 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About ESPCI ParisTech

    ESPCI ParisTech

    ESPCI ParisTech is a major institution of higher education an internationally renowned research center, and a fertile ground of innovation for industry.  Founded by the City of Paris in 1882, for over a century the School has attracted leading scientific innovators like Nobel Prize laureates Pierre and Marie Curie, Paul Langevin, Frédéric Joliot-Curie, Pierre-Gilles de Gennes, and Georges Charpak, who continue to contribute to the institution’s international reputation.  The School’s culture of excellence remains as vibrant as ever. Fully 60% of graduates go on to complete a thesis and earn their PhD. The School’s teaching faculty and researchers are building tomorrow’s knowledge base, publishing an article a day in top international scientific journals ; inventing the industry of the future, filing for a patent every single week.  A model of excellence and an illustration of the "French exception", ESPCI ParisTech is a founding member of ParisTech, the Paris Institute of Science and Technology.  Also see Langevin Institute (L’institut Langevin).