1. David L. Wilson

    0 Comments Leave a Comment

    1-15 of 27 1 2 »
    1. Mentioned In 27 Articles

    2. Automated analysis of intravascular OCT image volumes

      Automated analysis of intravascular OCT image volumes
      This disclosure provides systems and methods to automatically classify stent struts as covered or uncovered and to measure the thickness of tissue coverage. As one example, the method includes storing three-dimensional image data acquired intravascularly via an optical coherence tomography (OCT) apparatus and detecting struts based on analysis of the image data. Image data corresponding to each of the detected struts is further analyzed automatically to compute an indication of ...
      Read Full Article
    3. Analysis of optical tomography (OCT) images

      Analysis of optical tomography (OCT) images
      A method includes storing three-dimensional image data acquired intravascularly via an optical coherence tomography (OCT) apparatus. The image data is analyzed to compute a probability estimate of stent presence at support positions appearing in an A-line. Stent strut locations are located in three-dimensional space based on the computed probability estimate of stent presence.
      Read Full Article
    4. Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images

      Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images
      We develop neural-network-based methods for classifying plaque types in clinical intravascular optical coherence tomography (IVOCT) images of coronary arteries. A single IVOCT pullback can consist of 500 microscopic-resolution images, creating both a challenge for physician interpretation during an interventional procedure and an opportunity for automated analysis. In the proposed method, we classify each A-line, a datum element that better captures physics and pathophysiology than a voxel, as a fibrous layer ...
      Read Full Article
    5. Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography

      Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography
      An estimated 17.5 million people died from a cardiovascular disease in 2012, representing 31 percent of all global deaths. Most acute coronary events result from rupture of the protective fibrous cap overlying an atherosclerotic plaque. The task of early identification of plaque types that can potentially rupture is, therefore, of great importance. The state-of-the-art approach to imaging blood vessels is intravascular optical coherence tomography (IVOCT). However, currently, this is ...
      Read Full Article
    6. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography

      Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography
      Optical coherence tomography angiography (OCTA) is a noninvasive method of 3D imaging of the retinal and choroidal circulations. However, vascular depth discrimination is limited by superficial vessels projecting flow signal artifact onto deeper layers. The projection-resolved (PR) OCTA algorithm improves depth resolution by removing projection artifact while retaining in-situ flow signal from real blood vessels in deeper layers. This novel technology allowed us to study the normal retinal vasculature in ...
      Read Full Article
    7. Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

      Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation
      Evidence suggests high-resolution, high-contrast, 100 frames / s 100frames/s intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and three-dimensional (3-D) registration methods to provide validation of IVOCT pullback volumes using microscopic, color, and fluorescent cryo-image volumes with optional registered cryo-histology. A specialized registration method matched IVOCT pullback images acquired in the catheter reference frame to a ...
      Read Full Article
    8. Processing to determine optical parameters of atherosclerotic disease from phantom and clinical intravascular optical coherence tomography three-dimensional pullbacks

      Processing to determine optical parameters of atherosclerotic disease from phantom and clinical intravascular optical coherence tomography three-dimensional pullbacks
      Analysis of intravascular optical coherence tomography (IVOCT) data has potential for real-time in vivo plaque classification. We developed a processing pipeline on a three-dimensional local region of support for estimation of optical properties of atherosclerotic plaques from coronary artery, IVOCT pullbacks. Using realistic coronary artery disease phantoms, we determined insignificant differences in mean and standard deviation estimates between our pullback analyses and more conventional processing of stationary acquisitions with frame ...
      Read Full Article
    9. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

      3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation
      High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true ...
      Read Full Article
    10. Classification of calcium in intravascular OCT images for the purpose of intervention planning

      Classification of calcium in intravascular OCT images for the purpose of intervention planning
      The presence of extensive calcification is a primary concern when planning and implementing a vascular percutaneous intervention such as stenting. If the balloon does not expand, the interventionalist must blindly apply high balloon pressure, use an atherectomy device, or abort the procedure. As part of a project to determine the ability of Intravascular Optical Coherence Tomography (IVOCT) to aid intervention planning, we developed a method for automatic classification of calcium ...
      Read Full Article
    11. 3-D Stent Detection in Intravascular OCT Using a Bayesian Network and Graph Search

      3-D Stent Detection in Intravascular OCT Using a Bayesian Network and Graph Search
      Worldwide, many hundreds of thousands of stents are implanted each year to revascularize occlusions in coronary arteries. Intravascular optical coherence tomography (OCT) is an important emerging imaging technique, which has the resolution and contrast necessary to quantitatively analyze stent deployment and tissue coverage following stent implantation. Automation is needed, as current, it takes up to 16 hours to manually analyze hundreds of images and thousands of stent struts from a ...
      Read Full Article
    12. Parameter estimation of atherosclerotic tissue optical properties from three-dimensional intravascular optical coherence tomography

      Parameter estimation of atherosclerotic tissue optical properties from three-dimensional intravascular optical coherence tomography
      We developed robust, three-dimensional methods, as opposed to traditional A-line analysis, for estimating the optical properties of calcified, fibrotic, and lipid atherosclerotic plaques from in vivo coronary artery intravascular optical coherence tomography clinical pullbacks. We estimated attenuation t and backscattered intensity I 0 from small volumes of interest annotated by experts in 35 pullbacks. Some results were as follows: noise reduction filtering was desirable, parallel line (PL) methods outperformed individual ...
      Read Full Article
    13. Differences determined by optical coherence tomography volumetric analysis in non-culprit lesion morphology and inflammation in ST-segment elevation myocardial infarction and stable angina pectoris patients

      Differences determined by optical coherence tomography volumetric analysis in non-culprit lesion morphology and inflammation in ST-segment elevation myocardial infarction and stable angina pectoris patients
      .... Zhao Wang PhD^2, 3. Hiram G. Bezerra MD, PhD^3, 4. Pedro Alves Lemos MD, PhD^1, 5. Audrey Schnell PhD^3, 6. David L. Wilson PhD^2, 7. Andrew M. Rollins PhD^2, 8. Marco A. Costa MD, PhD^3,† and 9. Guilherme F....
      Read Full Article
    14. Segmentation and quantification for intravascular optical coherence tomography images

      Segmentation and quantification for intravascular optical coherence tomography images
      A system and related methods for automatic or semi-automatic segmentation and quantification of blood vessel structure and physiology, including segmentation and quantification of lumen, guide wire, vessel wall, calcified plaques, fibrous caps, macrophages, metallic and bioresorbable stents are described, and including visualization of results. Calcified plaque segmentation can be used to estimate the distribution of superficial calcification and inform strategies stenting. Volumetric segmentation and quantification of fibrous caps can provide ...
      Read Full Article
    15. Feature Of The Week 1/20/13: CWRU Demonstrates Automatic Stent Detection in Intravascular OCT Images Using Bagged Decision Trees

      Feature Of The Week 1/20/13: CWRU Demonstrates Automatic Stent Detection in Intravascular OCT Images Using Bagged Decision Trees
      Cardiovascular disease is the leading cause of death worldwide. Stent implantation by means of percutaneous coronary intervention is the most common coronary revascularization procedure. Intravascular Optical Coherence Tomography (iOCT) is the only imaging modality with the resolution and contrast necessary to enable accurate measurements of luminal architecture and neointima stent coverage. Manual analysis of intravascular OCT pullbacks is time consuming, limiting the size and number of studies that can be ...
      Read Full Article
    16. Automatic stent detection in intravascular OCT images using bagged decision trees

      Automatic stent detection in intravascular OCT images using bagged decision trees
      Intravascular optical coherence tomography (iOCT) is being used to assess viability of new coronary artery stent designs. We developed a highly automated method for detecting stent struts and measuring tissue coverage. We trained a bagged decision trees classifier to classify candidate struts using features extracted from the images. With 12 best features identified by forward selection, recall (precision) were 90%94% (85%90%). Including struts deemed insufficiently bright for manual ...
      Read Full Article
    17. 1-15 of 27 1 2 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About David L. Wilson

    David L. Wilson

    David L. Wilson is the Robert Herbold Professor in the Biomedical Engineering department at Case Wesern Reserve University.   Dr. Wilson  research involves minimally invasive, interventional medical imaging. In one project, cancerous tumors are tumors are treated with MR-guided RF thermal ablation. My research group is developing 3D registration, segmentation, and visualization imaging is high definition TV viewing of moving objects in the body. This quantum-limited image sequence is quite noisy, and spatio-temporal processing by the human visual system is an extremely important step in the imaging chain. Thus, we study new digital image enhancement techniques using experimental and theoretical image perception evaluations. In yet another application of imaging to treatment, we use high-resolution, 3D MR images to estimate biomechanical parameters in the fingers and wrist in order to plan tendon transfer surgery and functional neuromuscular stimulation (FNS) interventions. Digital image processing can also be applied to nanoscale images, and we are creating techniques using mathematical morphology to improve AFM images of single biomolecules.