1. Daniel L. Marks

    0 Comments Leave a Comment

    1-15 of 25 1 2 »
    1. Mentioned In 25 Articles

    2. Diffusion tensor optical coherence tomography

      Diffusion tensor optical coherence tomography
      In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the ...
      Read Full Article
    3. Inverse scattering for frequency-scanned full-field optical coherence tomography

      Inverse scattering for frequency-scanned full-field optical coherence tomography
      Full-field optical coherence tomography (OCT) is able to image an entire en face plane of scatterers simultaneously, but typically the focus is scanned through the volume to acquire three-dimensional structure. By solving the inverse scattering problem for full-field OCT, we show it is possible to computationally reconstruct a three-dimensional volume while the focus is fixed at one plane inside the sample. While a low-numerical-aperture (NA) OCT system can tolerate defocus ...
      Read Full Article
    4. Group refractive index reconstruction with broadband interferometric confocal microscopy

      Group refractive index reconstruction with broadband interferometric confocal microscopy
      A system and method for microscale measurement and imaging of the group refractive index of a sample. The method utilizes a broadband confocal high-numerical aperture microscope embedded into an interferometer and a spectrometric means, whereby spectral interferograms are analyzed to compute optical path delay of the beam traversing the sample as the sample is translated through the focus of an interrogating light beam. A determination of group refractive index may ...
      Read Full Article
    5. Molecular Histopathology by Spectrally Reconstructed Nonlinear Interferometric Vibrational Imaging

      Molecular Histopathology by Spectrally Reconstructed Nonlinear Interferometric Vibrational Imaging
      Sensitive assays for rapid quantitative analysis of histologic sections, resected tissue specimens, or in situ tissue are highly desired for early disease diagnosis. Stained histopathology is the gold standard but remains a subjective practice on processed tissue taking from hours to days. We describe a microscopy technique that obtains a sensitive and accurate color-coded image from intrinsic molecular markers. Spectrally reconstructed nonlinear interferometric vibrational imaging can differentiate cancer versus normal ...
      Read Full Article
    6. New imaging technique accurately finds cancer cells, fast

      New imaging technique accurately finds cancer cells, fast
      A team of Illinois researchers developed an imaging technique that uses laser light to identify cancer cells. The fast, accurate technique could lead to real-time optical biopsies. From left, Eric Chaney, a research specialist at the Beckman Institute; Stephen Boppart, a professor of electrical and computer engineering, of bioengineering and of medicine; Martin Gruebele, a professor of chemistry and of physics; and Wladamir Benalcazar, a graduate fellow at the Beckman ...
      Read Full Article
    7. Partially coherent illumination for inverse scattering full-field interferometric synthetic aperture microscopy

      Methods and apparatus for three-dimensional imaging of a sample. A source is provided of a beam of light characterized by partial spatial coherence. The beam is focused onto a sample and scattered light from the sample is superposed with a reference beam derived from the source onto a focal plane detector array to provide an interference signal. A forward scattering model is derived relating measurement data to structure of an ...
      Read Full Article
    8. Nonlinear interferometric vibrational imaging

      A method of examining a sample, which includes: exposing a reference to a first set of electromagnetic radiation, to form a second set of electromagnetic radiation scattered from the reference; exposing a sample to a third set of electromagnetic radiation to form a fourth set of electromagnetic radiation scattered from the sample; and interfering the second set of electromagnetic radiation and the fourth set of electromagnetic radiation. The first set ...
      Read Full Article
    9. Interferometric synthetic aperture microscopy

      Methods and apparatus for three-dimensional imaging of a sample. A source is provided of a beam of substantially collimated light characterized by a temporally dependent spectrum. The beam is focused in a plane characterized by a fixed displacement along the propagation axis of the beam, and scattered light from the sample is superposed with a reference beam derived from the substantially collimated source onto a focal plane detector array to ...
      Read Full Article
    10. Validation of nonlinear interferometric vibrational imaging as a molecular OCT technique by the use of Raman microscopy

      We validate a molecular imaging technique called Nonlinear Interferometric Vibrational Imaging (NIVI) by comparing vibrational spectra with those acquired from Raman microscopy. This broadband coherent anti-Stokes Raman scattering (CARS) technique uses heterodyne detection and OCT acquisition and design principles to interfere a CARS signal generated by a sample with a local oscillator signal generated separately by a four-wave mixing process. These are mixed and demodulated by spectral interferometry. Its confocal ...
      Read Full Article
    11. Interferometric Synthetic Aperture Microscopy: Physics-Based Image Reconstruction from Optical Coherence Tomography Data

      Optical coherence tomography (OCT) is an optical ranging technique analogous to radar - detection of back-scattered light produces a signal that is temporally localized at times-of-flight corresponding to the location of scatterers in the object. However the interferometric collection technique used in OCT allows, in principle, the coherent collection of data, i.e. amplitude and phase information can be extracted. Interferometric synthetic aperture microscopy (ISAM) adds phase-stable data collection to OCT ...
      Read Full Article
    12. Volumetric endoscopic coherence microscopy using a coherent fiber bundle

      Methods for employing coherent bundles of optical fibers, whether single- or multi-mode, for optical coherence tomography or optical coherence microscopy. Either a substantially monochromatic source or a broadband source is spatially decohered and/or spatially filtered prior to coupling into the fiber bundle for illumination of a sample. A scatter signal from features disposed beneath the surface of the sample is interfered with a reference signal derived, at either end ...
      Read Full Article
    13. 1-15 of 25 1 2 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Daniel L. Marks

    Daniel L. Marks

    Daniel L. Marks is a Senior Research Scientist in Dr. Boppart Biophotonics Imaging Laboratory at the Beckman Institute at University of Illinois at Urbana-Champaign.