1. Christoph K. Hitzenberger

    0 Comments Leave a Comment

    1-15 of 126 1 2 3 4 5 6 7 8 9 »
    1. Mentioned In 126 Articles

    2. IMAGING OF VITELLIFORM MACULAR LESIONS USING POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY

      IMAGING OF VITELLIFORM MACULAR LESIONS USING POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY
      Purpose: To examine the involvement of the retinal pigment epithelium (RPE) in the presence of vitelliform macular lesions (VML) in Best vitelliform macular dystrophy (BVMD), autosomal recessive bestrophinopathy, and adult-onset vitelliform macular degeneration using polarization-sensitive optical coherence tomography (PS-OCT). Methods: A total of 35 eyes of 18 patients were imaged using a PS-OCT system and blue light fundus autofluorescence imaging. Pathogenic mutations in the BEST1 gene, 3 of which were ...
      Read Full Article
    3. Beyond backscattering: Optical neuroimaging by BRAD

      Beyond backscattering: Optical neuroimaging by BRAD
      Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT. As backscattered light is picked ...
      Read Full Article
    4. Digital scan of the eye provides accurate picture of a person’s general health

      Digital scan of the eye provides accurate picture of a person’s general health
      Personalized medicine or "precision medicine" is the most significant trend in 21st century medicine. "Its all about the right treatment for the right patient at the right time," says Ursula Schmidt-Erfurth, Head of MedUni Vienna's Department of Ophthalmology and Optometry. And looking into the eye using digital techniques and analysing Big Data also provides an accurate picture of a person's general medical condition, facilitates early diagnosis and treatment ...
      Read Full Article
    5. Multi-directional optical coherence tomography for retinal imaging

      Multi-directional optical coherence tomography for retinal imaging
      We introduce multi-directional optical coherence tomography (OCT), a technique for investigation of the scattering properties of directionally reflective tissue samples. By combining the concepts of multi-channel and directional OCT, this approach enables simultaneous acquisition of multiple reflectivity depth-scans probing a mutual sample location from differing angular orientations. The application of multi-directional OCT in retinal imaging allows for in-depth investigations on the directional reflectivity of the retinal nerve fiber layer, Henles ...
      Read Full Article
    6. Adolf Friedrich Fercher: a pioneer of biomedical optics

      Adolf Friedrich Fercher: a pioneer of biomedical optics
      Adolf Friedrich Fercher, an outstanding pioneer of biomedical optics, passed away earlier this year. He was a brilliant and visionary researcher who pioneered various fields of biomedical optics, such as laser speckle flowgraphy, tissue interferometry, and optical coherence tomography (OCT). On the occasion of the 25th anniversary of OCT, this paper reviews and commemorates Ferchers pioneering work.
      Read Full Article
    7. Polarisation-sensitive optical coherence tomography for material

      Polarisation-sensitive optical coherence tomography for material
      Optical Coherence Tomography (OCT) is an emerging technology for high-resolution non-contact imaging of semi-transparent structures. Originally developed for medical diagnostics, we extend the OCT-technique to problems posed in material testing and characterisation. Layer thickness and refractive indices as well as internal structures of polymer parts have been determined within this study. An extension of OCT, namely polarisation-sensitive OCT (PS-OCT) has been used to identify regions of increased anisotropy within injection-moulded ...
      Read Full Article
    8. Feature Of The Week 09/03/2017: Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples

      Feature Of The Week 09/03/2017: Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples
      A visible light spectral domain optical coherence microscopy system was developed. A high axial resolution of 0.88 m in tissue was achieved using a broad visible light spectrum (425 685 nm). Healthy human brain tissue was imaged to quantify the difference between white (WM) and grey matter (GM) in intensity and attenuation. The high axial resolution enables the investigation of amyloid-beta plaques of various sizes in human brain tissue ...
      Read Full Article
    9. Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples

      Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples
      A visible light spectral domain optical coherence microscopy system was developed. A high axial resolution of 0.88 m in tissue was achieved using a broad visible light spectrum (425 685 nm). Healthy human brain tissue was imaged to quantify the difference between white (WM) and grey matter (GM) in intensity and attenuation. The high axial resolution enables the investigation of amyloid-beta plaques of various sizes in human brain tissue ...
      Read Full Article
    10. Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT

      Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT
      Conventional imaging of the human cornea with optical coherence tomography (OCT) relies on telecentric scanning optics with sampling beams that are parallel to the optical axis of the eye. Because of the shape of the cornea, the beams have in some areas considerable inclination to the corneal surface which is accompanied by low signal intensities in these areas and thus an inhomogeneous appearance of corneal structures. In addition, alterations in ...
      Read Full Article
    11. Polarization sensitive optical coherence tomography – a review [Invited]

      Polarization sensitive optical coherence tomography – a review [Invited]
      Optical coherence tomography (OCT) is now a well-established modality for high-resolution cross-sectional and three-dimensional imaging of transparent and translucent samples and tissues. Conventional, intensity based OCT, however, does not provide a tissue-specific contrast, causing an ambiguity with image interpretation in several cases. Polarization sensitive (PS) OCT draws advantage from the fact that several materials and tissues can change the lights polarization state, adding an additional contrast channel and providing quantitative ...
      Read Full Article
    12. Visible light spectral domain optical coherence microscopy system for ex vivo imaging

      Visible light spectral domain optical coherence microscopy system for ex vivo imaging
      A visible light spectral domain optical coherence microscopy system operating in the wavelength range of 450-680 nm was developed. The resulting large wavelength range of 230 nm enabled an ultrahigh axial resolution of 0.88m in tissue. The setup consisted of a Michelson interferometer combined with a homemade spectrometer with a spectral resolution of 0.03 nm. Scanning of 1 x 1 mm 2 and 0.5 x 0.5 ...
      Read Full Article
    13. 1-15 of 126 1 2 3 4 5 6 7 8 9 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Christoph K. Hitzenberger

    Christoph K. Hitzenberger

    Christoph Hitzenberger is vice chair of the Center for Medical Physics and Biomedical Engineering at the Medical University of Vienna. He co-founded, with Adolf F. Fercher, the university’s biomedical optics research group, and developed the heterodyne low-coherence interferometry (LCI) system for measuring intraocular distances (axial eye length, retinal thickness). This work led to the development of the first commercial LCI ocular biometry system, and the technology was expanded to record OCT images, the first in vivo retinal images of the human eye. He also demonstrated, with Fercher, the first application of spectral domain LCI to intraocular ranging, enabling rapid 3-D imaging and revolutionizing retinal diagnostics. Hitzenberger received the award of the Hoechst Foundation for Advancement of Medical Research in Austria and is a fellow of the International Society for Optics and Photonics and the Optical Society. In addition to serving as editor-in-chief of Biomedical Optics Express , he is the author or co-author of some 150 peer-reviewed scientific publications.