1. Byeong Ha Lee

    0 Comments Leave a Comment

    1-15 of 63 1 2 3 4 5 »
    1. Mentioned In 63 Articles

    2. Angiographic Imaging of an In Vivo Mouse Brain as a Guiding Star for Automatic Digital Refocusing in OCT

      Angiographic Imaging of an In Vivo Mouse Brain as a Guiding Star for Automatic Digital Refocusing in OCT
      A method allows the extraction of the recovery factor that maximizes the image contrast of OCT (optical coherence tomography) and/or OCTA (OCT angiography) of a living subject is proposed in this study. Due to the finite depth of focus in imaging optics, the volume OCT imaging suffers from blurriness in the lateral resolution. By utilizing the digital hologram method or angular spectrum method, the blurred image can be refocused ...
      Read Full Article
    3. Identification of Fungus-infected Tomato Seeds Based on Full-Field Optical Coherence Tomography

      Identification of Fungus-infected Tomato Seeds Based on Full-Field Optical Coherence Tomography
      The morphological changes of anthracnose (fungus) -infected tomato seeds have been studied to identify the infection and characterize its effect. Full-field optical coherence tomography (FF-OCT) has been utilized as a nondestructive but efficient modality for visualizing the effects of fungal infection. The cross-sectional images extracted from a stack of en face FF-OCT images showed significant changes with infection in the seed structure. First of all, the seed coat disappeared with ...
      Read Full Article
    4. Quantitative discrimination of pearls using polarization-sensitive optical coherence tomography

      Quantitative discrimination of pearls using polarization-sensitive optical coherence tomography
      We propose a robust method that can quantitatively discriminate genuine pearls from imitation ones by introducing the concept of entropy in the polarization-sensitive optical coherence tomography (PS-OCT). Qualitatively, by examining the birefringence properties of the nacre region of pearls with PS-OCT, the genuine pearls can be easily discriminated. To quantify the amount of birefringence formation, however, the concept of phase retardation entropy is introduced, which is expected to have a ...
      Read Full Article
    5. In vivo three-dimensional imaging of human corneal nerves using Fourier-domain optical coherence tomography

      In vivo three-dimensional imaging of human corneal nerves using Fourier-domain optical coherence tomography
      We have employed Fourier-domain optical coherence tomography (FD-OCT) to achieve corneal nerve imaging, which could be useful in surgical planning and refractive surgery. Because the three-dimensional (3-D) images of the corneal nerves were acquiredin vivo, unintentional movement of the subject during the measurement led to imaging artifacts. These artifacts were compensated for with a series of signal processing techniques, namely realigning A-scan images to flatten the boundary and cross-correlating adjacent ...
      Read Full Article
    6. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation

      Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation
      ympanic membrane (TM) perforation is one of the most common otology complications. To date, there has not been reported TM regeneration using bioprinted scaffold. The purpose of this study was to evaluate the efficacy and feasibility of bioprinted polycaprolactone/collagen/alginate-mesenchymal stem cell (PCAMSC) scaffolds for the regeneration of subacute TM perforation. Sprague-Dawley rats were used in an animal model of subacute TM perforation. In the experimental group (n = 7 ...
      Read Full Article
      Mentions: Byeong Ha Lee
    7. Examination of Gland Dropout Detected on Infrared Meibography by Using Optical Coherence Tomography Meibography

      Examination of Gland Dropout Detected on Infrared Meibography by Using Optical Coherence Tomography Meibography
      Purpose To elucidate the anatomic details of gland dropout detected on two-dimensional infrared (IR) meibography in cases of dry eye associated with meibomian gland dysfunction (MGD) by using three-dimensional optical coherence tomography (OCT) meibography. Methods In this cross-sectional, observational case series, we enrolled gland dropout detected on IR meibography; the condition was then examined using a real-time swept-source OCT system. Accordingly, a series of 500 raster B-scan OCT images, with ...
      Read Full Article
    8. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

      An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography
      We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system ...
      Read Full Article
    9. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

      An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography
      We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system ...
      Read Full Article
    10. All optical fiber combined-imaging system of photoacoustic and optical coherence tomography

      All optical fiber combined-imaging system of photoacoustic and optical coherence tomography
      We present an all optical fiber combined-imaging system that integrates non-contact photoacoustic tomography (NPAT) and optical coherence tomography (OCT) to simultaneously provide PA and OCT images. The fiber-based PAT system utilizing a Mach-Zehnder interferometer with a fiber laser of 1550 nm measures the photoacoustic signal at the sample surface. For the generation of a PA signal, a pulse train from a bulk type Nd:YAG laser illuminates the sample via ...
      Read Full Article
    11. 1-15 of 63 1 2 3 4 5 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Byeong Ha Lee

    Byeong Ha Lee

    Byeong Ha Lee received his B.S. and M.S. degrees in physics from Seoul National University, Korea, in 1984 and 1989, respectively. He obtained Ph.D degree in physics from University of Colorado at Boulder, USA. After working as STA in Osaka National Research Institute of Japan from 1997-1999, he joined Gwangju Institute of Science and Technology (GIST), Korea, where he is currently serving as a full-time professor. He is specialized in areas related to fiber optic sensors, fiber gratings, specialty fibers, optical coherence tomography (OCT), and digital holographic microscopy (DHM). His current research interests are related to developing fiber/bulk optic systems for biomedical applications including cell biology.