1. Brad Fortune

    0 Comments Leave a Comment

    1-15 of 34 1 2 3 »
    1. Mentioned In 34 Articles

    2. Effect of Trabeculectomy on Optical Coherence Tomography (OCT) Measurements of the Optic Nerve Head Neuroretinal Rim Tissue

      Effect of Trabeculectomy on Optical Coherence Tomography (OCT) Measurements of the Optic Nerve Head Neuroretinal Rim Tissue
      Purpose Ophthalmologists commonly perform glaucoma surgery to treat progressive glaucoma. Few studies have examined the stability of OCT neuroretinal rim parameters after glaucoma surgery for ongoing detection of glaucoma progression. Design Longitudinal cohort study. Participants 20 eyes (16 subjects) with primary open angle glaucoma who had undergone a trabeculectomy. Methods We calculated the change in OCT parameters (minimum rim area (MRA), minimum rim width (MRW), Bruchs membrane opening (BMO) area ...
      Read Full Article
    3. OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes

      OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
      Purpose To assess anterior scleral canal opening (ASCO) offset relative to Bruchs membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. Design Cross-sectional study Methods After OCT optic nerve head (ONH) and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented and planes, centroids, size and shape were calculated. Neural canal direction ...
      Read Full Article
    4. Optical Coherence Tomography Segmentation Errors of the Retinal Nerve Fiber Layer Persist Over Time

      Optical Coherence Tomography Segmentation Errors of the Retinal Nerve Fiber Layer Persist Over Time
      Prcis: There are errors in automated segmentation of the retinal nerve fiber layer in glaucoma suspects or patients with mild glaucoma that appear to persist over time; however, automated segmentation has greater repeatability than manual segmentation. Purpose: To identify whether optical coherence tomography (OCT) segmentation errors in retinal nerve fiber layer (RNFL) thickness measurements persist longitudinally. Methods: This was a cohort study. We used spectral domain OCT (Spectralis, Heidelberg Engineering ...
      Read Full Article
    5. Factors Influencing Optical Coherence Tomography Peripapillary Choroidal Thickness: A Multicenter Study

      Factors Influencing Optical Coherence Tomography Peripapillary Choroidal Thickness: A Multicenter Study
      Purpose : To quantify peripapillary choroidal thickness (PCT) and the factors that influence it in healthy participants who represent the racial and ethnic composition of the U.S. population. Methods : A total of 362 healthy participants underwent optical coherence tomography (OCT) enhanced depth imaging of the optic nerve head with a 24 radial B-scan pattern aligned to the fovea to Bruch's membrane opening axis. Bruch's membrane, anterior scleral canal ...
      Read Full Article
    6. An Examination of the Frequency of Paravascular Defects and Epiretinal Membranes in Eyes With Early Glaucoma Using En-face Slab OCT Images

      An Examination of the Frequency of Paravascular Defects and Epiretinal Membranes in Eyes With Early Glaucoma Using En-face Slab OCT Images
      Purpose: To examine the frequency of paravascular defects (PDs) and macular epiretinal membranes (ERMs) in eyes categorized as having mild glaucoma or glaucoma suspect using en-face slab analysis of optical coherence tomography (OCT) scans. Materials and Methods: Fifty-seven glaucomatous eyes, 44 low-risk suspect eyes, and 101 healthy control eyes were included in the study. The 101 glaucomatous and suspect eyes had a mean deviation better than 6dB on the 24-2 ...
      Read Full Article
    7. Glaucoma Specialist Detection of Optical Coherence Tomography Suspicious Rim Tissue in Glaucoma and Glaucoma Suspect Eyes.

      Glaucoma Specialist Detection of Optical Coherence Tomography Suspicious Rim Tissue in Glaucoma and Glaucoma Suspect Eyes.
      Purpose To assess glaucoma specialists detection of optic nerve head (ONH) rim tissue that is thin by optical coherence tomography (OCT) criteria. Design Reliability analysis Methods 5 clinicians marked the disc margin (DM) and rim margin (RM) on stereo-photos of 151 glaucoma or glaucoma suspect eyes obtained within 3 months of OCT imaging. The photo and OCT infrared image for each eye were colocalized and regionalized into twelve sectors relative ...
      Read Full Article
    8. Optical coherence tomography evaluation of the optic nerve head neuro‐retinal rim in glaucoma

      Optical coherence tomography evaluation of the optic nerve head neuro‐retinal rim in glaucoma
      Clinical examination of the optic disc is a fundamental component of any ophthalmic evaluation, but it is especially important for diagnosis and management of glaucoma. The purpose of this article is to: (1) review the limitations inherent to clinical examination; (2) outline the rationale for adopting into clinical practice quantitative measures of the optic nerve head neuro‐retinal rim tissue integrity derived from current optical coherence tomography imaging approaches; (3 ...
      Read Full Article
    9. A Comparison of En Face Optical Coherence Tomography and Fundus Autofluorescence in Stargardt Disease

      A Comparison of En Face Optical Coherence Tomography and Fundus Autofluorescence in Stargardt Disease
      Purpose : To compare morphologic changes on en face images derived from wide-field swept-source optical coherence tomography (ssOCT) to hypo- and hyperautofluorescent (hypoAF, hyperAF) areas on short-wavelength autofluorescence (SW-AF), and near-infrared (NIR)-AF in recessive Stargardt disease (STGD1). Methods : Wide-field ssOCT cube scans were obtained from 16 patients (16 eyes). Averaged B-scans and SW-AF images were obtained using Spectralis HRA+OCT. NIR-AF images were obtained from 6 eyes. The inner/outer ...
      Read Full Article
    10. Automated segmentation errors when using optical coherence tomography to measure retinal nerve fiber layer thickness in glaucoma

      Automated segmentation errors when using optical coherence tomography to measure retinal nerve fiber layer thickness in glaucoma
      Purpose To characterize the error of optical coherence tomography (OCT) measurements of retinal nerve fiber layer (RNFL) thickness when using automated retinal layer segmentation algorithms without manual refinement. Design: cross-sectional study Methods Setting: glaucoma clinical practice. Study Population: 3490 scans from 412 eyes of 213 individuals with a diagnosis of glaucoma or glaucoma suspect. Observational Procedures: We used spectral domain OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) to measure RNFL thickness ...
      Read Full Article
    11. In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma

      In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma
      Purpose : To compare optical coherence tomography (OCT) detected, optic nerve head (ONH) compliance within control and experimental glaucoma (EG) eyes of 15 monkeys at EG onset. Methods : Intraocular pressure (IOP) was chronically elevated in one eye of each animal using a laser. Experimental glaucoma onset was identified using confocal scanning laser tomography (CSLT). Optical coherence tomography ONH imaging (40 radial B-scans) was performed at 10 mm Hg before and after ...
      Read Full Article
    12. Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma

      Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma
      Purpose : We compare spectral-domain optical coherence tomography (SDOCT) measurements of minimum rim width (MRW), minimum rim area (MRA), and peripapillary retinal nerve fiber layer thickness (RNFLT) to complete orbital optic nerve axon counts in nonhuman primates (NHP) with unilateral experimental glaucoma (EG). Methods : Biweekly SDOCT measurements of MRW, MRA, and RNFLT were acquired under manometric IOP control (10 mm Hg) in 51 NHP during baseline (mean SD, 5.0 1 ...
      Read Full Article
    13. Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma

      Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma
      Purpose : We determined whether longitudinal changes in retinal nerve fiber layer (RNFL) reflectance provide useful prognostic information about longitudinal changes in function in glaucoma. Methods : The reflectance intensity of each pixel within spectral-domain optical coherence tomography (SD-OCT) circle scans was extracted by custom software. A repeatability cohort comprising 53 eyes of 27 participants (average visual field mean deviation [MD] 1.65 dB) was tested five times within a few weeks ...
      Read Full Article
    14. Details of Glaucomatous Damage Are Better Seen on OCT En Face Images Than on OCT Retinal Nerve Fiber Layer Thickness Maps

      Details of Glaucomatous Damage Are Better Seen on OCT En Face Images Than on OCT Retinal Nerve Fiber Layer Thickness Maps
      Purpose : High-resolution images of glaucomatous damage to the retinal nerve fiber layer (RNFL) were obtained with an adaptive optics-scanning light ophthalmoscope (AO-SLO) and used as a basis for comparisons between en face slab images and thickness maps derived from optical coherence tomography (OCT) scans. Methods : Wide-field (9 12 mm) cube scans were obtained with swept-source OCT (DRI-OCT) from six eyes of six patients. All eyes had a deep defect near ...
      Read Full Article
    15. Age-related Differences in Longitudinal Structural Change by Spectral Domain Optical Coherence Tomography in Early Experimental Glaucoma

      Age-related Differences in Longitudinal Structural Change by Spectral Domain Optical Coherence Tomography in Early Experimental Glaucoma
      Purpose. To characterize age-related differences in the magnitude of Spectral Domain Optical Coherence Tomography (SDOCT) structural change in early experimental glaucoma (EG). Methods. Both eyes from 4 young (1.4 - 2.6 yrs) and 4 old (18.6 - 21.9 yrs) rhesus monkeys were imaged at least 3 times at baseline, and then every 2 weeks following laser-induced, chronic, unilateral IOP elevation until the onset of EG (Confocal Scanning Laser ...
      Read Full Article
    16. The Effect of Age on Optic Nerve Axon Counts, SDOCT Scan Quality, and Peripapillary Retinal Nerve Fiber Layer Thickness Measurements in Rhesus Monkeys

      The Effect of Age on Optic Nerve Axon Counts, SDOCT Scan Quality, and Peripapillary Retinal Nerve Fiber Layer Thickness Measurements in Rhesus Monkeys
      Purpose: To evaluate the effect of age on optic nerve axon counts, spectral-domain optical coherence tomography (SDOCT) scan quality, and peripapillary retinal nerve fiber layer thickness (RNFLT) measurements in healthy monkey eyes. Methods: In total, 83 healthy rhesus monkeys were included in this study (age range: 1.226.7 years). Peripapillary RNFLT was measured by SDOCT. An automated algorithm was used to count 100% of the axons and measure their ...
      Read Full Article
    17. 1-15 of 34 1 2 3 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Brad Fortune

    Brad Fortune

    Brad Fortune, O.D. Ph.D., is Director of Electrodiagnostic Services at Devers Eye Institute and Associate Scientist at the Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health System. Portland Oregon.