1. Stephen A. Boppart

    0 Comments Leave a Comment

    16-30 of 178 « 1 2 3 4 5 ... 10 11 12 »
    1. Mentioned In 178 Articles

    2. Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation

      Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation
      Purpose: The goal of this study was to evaluate the ability of our handheld optical coherence tomography (OCT) scanner to image the posterior and anterior structures of the human eye, and especially the individual layers of the retina, and to compare its diagnostic performance with that of a fixed desktop commercial ophthalmic OCT system. Methods: We compared the clinical imaging results of our handheld OCT with a leading commercial desktop ...
      Read Full Article
    3. University of Illinois Urbana-Champaign receives NIH Grant for Interoperative Label-Free Optical Molecular Imaging of Breast Tumor Margins

      University of Illinois Urbana-Champaign receives NIH Grant for Interoperative Label-Free Optical Molecular Imaging of Breast Tumor Margins
      ...or Interoperative Label-Free Optical Molecular Imaging of Breast Tumor Margins. The principal investigator is Stephen Boppart. The program began in 2012 and ends in 2017. Below is a summary of the proposed work. Margin ...
      Read Full Article
    4. Computational adaptive optics for interferometric synthetic aperture microscopy and other interferometric imaging

      Computational adaptive optics for interferometric synthetic aperture microscopy and other interferometric imaging
      Methods for correcting for aberrations in the image or three-dimensional reconstruction of a sampled region obtained by broadband interferometry. The sampled region is illuminated with a broadband beam of light, and light returned from the sample is detected, along with a reference beam, in order to derive an interference signal for pixels of a volume spanned by wavenumber and axes transverse to the beam propagation direction. An optimization procedure is ...
      Read Full Article
    5. Implementation and evaluation of Google Glass for visualizing real-time image and patient data in the primary care office

      Implementation and evaluation of Google Glass for visualizing real-time image and patient data in the primary care office
      ...ata in the primary care office Guillermo L. Monroy ; Nathan D. Shemonski ; Ryan L. Shelton ; Ryan M. Nolan ; Stephen A. Boppart; Implementation and evaluation of Google Glass for visualizing real-time image and patient ...
      Read Full Article
    6. Segmentation And Correlation Of Optical Coherence Tomography And X-RAY Images For Breast Cancer Diagnostics.

      Segmentation And Correlation Of Optical Coherence Tomography And X-RAY Images For Breast Cancer Diagnostics.
      Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely used to identify breast cancer pathology. Recent advances in optical coherence tomography (OCT) have enabled its use for the intraoperative assessment of surgical margins during breast cancer surgery. While each modality offers distinct contrast of normal and pathological features, there is an essential need to correlate image -based features between the two modalities to take advantage of the diagnostic capabilities ...
      Read Full Article
    7. State of the Industry report on Optical Coherence Tomography

      State of the Industry report on Optical Coherence Tomography
      The first commercial optical coherence tomography (OCT) imagers were introduced to ophthalmology by Advanced Ophthalmic Devices (now owned by Zeiss Meditec) in 1992. Since then, the market for OCT systems has grown at an impressive compounded annual rate of about 45%. This segment of the biophotonics marketplace has flourished because OCT enables sub-surface imaging of translucent or opaque materials, such as human tissue, in real time at micron resolution and ...
      Read Full Article
    8. 16-30 of 178 « 1 2 3 4 5 ... 10 11 12 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Stephen A. Boppart

    Stephen A. Boppart

    Stephen A. Boppart is a professor in the Biophotonics Imaging Laboratory at the University of Illinois Urbana Champaign.  Dr. Boppart received his Ph.D. from the Massachusetts Institute of Technology in 1998, followed by a M.D. from Harvard Medical School in 2000. Currently Prof. Boppart is a full-time faculty member in the Beckman Institute Nanoelectronics and Biophotonics Group as well as an associate professor in the UIUC Department of Electrical and Computer Engineering and the Bioengineering Department. In January 2007, he was named the Founding Director of the Mills Breast Cancer Institute at Carle Foundation Hospital. Dr. Boppart is also a Clinical Research Physician in the UI College of Medicine-Urbana. His fields of professional interest include optical imaging (specifically in Optical Coherence Tomography) and biophotonics in medicine and biology.

  3. Quotes

    1. We agree that, given the images we've seen from the hardware [adaptive optics] systems, our computational approaches are equivalent to those...In addition, we think we could do better by correcting the finer aberrations and by being able to manipulate the data post-acquisition, which gives us a lot more flexibility.
      In Bringing the human eye into focus
    2. We agree that, given the images we've seen from the hardware [adaptive optics] systems, our computational approaches are equivalent to those...In addition, we think we could do better by correcting the finer aberrations and by being able to manipulate the data post-acquisition, which gives us a lot more flexibility.
      In Bringing the human eye into focus
    3. Jim's innovation, scholarly activities, professional service, entrepreneurial efforts, and impact on the field of biomedical optics typifies the spirit of this award, and reflects the seminal changes that Britton Chance made during his lifetime...Few researchers in the world today have had such a profound impact as a result of their technological work that has literally changed our field, changed the way we practice medicine, and directly improved the lives of perhaps hundreds of thousands of patients (considering ophthalmology and cardiology).
      In Fujimoto Honored with Britton Chance Biomedical Optics Award
    4. We know that antibiotics don’t always work well if you have a biofilm, because the bacteria protect themselves and become resistant...In the presence of a chronic ear infection that has a biofilm, the bacteria may not respond to the usual antibiotics, and you need to stop them. But without being able to detect the biofilm, we have no idea whether or not it’s responding to treatment.
      In Nowhere to hide: New device sees bacteria behind the eardrum
    5. I think it's going to dramatically change things...What we hope is that diagnosis is going to get shifted closer and closer to the point of care...We’re developing techniques to get at molecular changes..So much of medicine and pathology are based on structural changes. If we think of a pathologist looking at a slide, he or she looks at the cells and tissue structures. A radiologist will look at how organs and these anatomical structures are arranged...But with a lot of these techniques, we can get the molecular changes where disease starts. So a pathologist that has molecular information, not just structural, will perhaps catch disease earlier. The same is true for Rohit’s work and Gabi’s work.
      In Positive Results: A New Era for Medical Diagnostics - News from UIUC
    6. It's the same challenge, but instead of imaging through the atmosphere, we're imaging through tissue, and instead of imaging a star, we're imaging a cell.
      In Computing the best high-resolution 3-D tissue images - News from Beckman Institute at UIUC
    7. The effectiveness is striking...Because of the aberrations of the human eye, when you look at the retina without adaptive optics you just see variations of light and dark areas that represent the rods and cones. But when you use adaptive optics, you see the rods and cones as distinct objects...are working to compute the best image possible.
      In Computing the best high-resolution 3-D tissue images - News from Beckman Institute at UIUC
    8. to emphasize the role of medical imaging and how this technology has enabled us to look into the body at many different size scales, how imaging has enabled us to diagnose disease, and how imaging has made a difference in our healthcare...Federal dollars have been used to fund technology that’s going to change and improve health care. They already have. In the area of optics and high-resolution optical imaging, there’s going to be better healthcare, economic development with new companies, new jobs, and new areas of research to investigate...We can now do real-time microscopic imaging in the operating room without waiting for pathology.
      In Boppart Presents at Congressional Briefing
    9. In the end, I expect the cost of this system will be slightly more than what it replaces, but with significantly more capabilities, I do expect the cost of this system to continue to fall as more systems are developed and demand increases...This will be a boon for poorer hospitals and Third World or developing countries...It is essentially a portable imaging system with digital data that can be sent via cell-phone networks for analysis by experts in larger cities/hospitals.
      In Scientists awarded grant to continue developing optical device for medical exams
    10. The result of this – if successful, could really reduce our health care costs and streamline our delivery of health care.
      In NIH Awards Stephen Boppart $5M For A Bioengineering Research Partnership to Develop Handheld Optical Imaging Technology