1. Arlie G. Capps

    0 Comments Leave a Comment

    1-7 of 7
    1. Mentioned In 7 Articles

    2. An iterative closest point approach for the registration of volumetric human retina image data obtained by optical coherence tomography

      An iterative closest point approach for the registration of volumetric human retina image data obtained by optical coherence tomography
      This paper introduces an improved approach for the volume data registration of human retina. Volume data registration refers to calculating out a near-optimal transformation between two volumes with overlapping region and stitching them together. Iterative closest point (ICP) algorithm is a registration method that deals with registration between points. Classical ICP is time consuming and often traps in local minimum when the overlapping region is not big enough. Optical Coherence ...
      Read Full Article
    3. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid

      Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid
      We compared the performance of three OCT angiography (OCTA) methods: speckle variance, amplitude decorrelation and phase variance for imaging of the human retina and choroid. Two averaging methods, split spectrum and volume averaging, were compared to assess the quality of the OCTA vascular images. All data were acquired using a swept-source OCT system at 1040 nm central wavelength, operating at 100,000 A-scans/s. We performed a quantitative comparison using ...
      Read Full Article
    4. Feature Of The Week 02/01/2015: Progress on Developing Adaptive Optics OCT for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts (with Audio Narration)

      Feature Of The Week 02/01/2015: Progress on Developing Adaptive Optics OCT for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts (with Audio Narration)
      Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of ...
      Read Full Article
    5. Progress on Developing Adaptive Optics-Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

      Progress on Developing Adaptive Optics-Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts
      Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of ...
      Read Full Article
    6. Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

      Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts
      Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of ...
      Read Full Article
    7. Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy

      Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy
      Purpose: To correlate retinal function and visual sensitivity with retinal morphology revealed by ultrahigh-resolution imaging with adaptive optics -optical coherence tomography (AO-OCT), on patients with geographic atrophy. Methods: Five eyes from five subjects were tested [4 with geographic atrophy (66.3 6.4 years, mean1S.D.) and 1 normal (61 years)]. Photopic and scotopic multifocal electroretinograms (mfERGs) were recorded. Visual fields were assessed with microperimetry (mP) combined with a scanning ...
      Read Full Article
    8. In-vivo imaging of inner retinal cellular morphology with adaptive optics-optical coherence tomography: challenges and possible solutions

      In-vivo imaging of inner retinal cellular morphology with adaptive optics-optical coherence tomography: challenges and possible solutions
      Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the outer layers of the human retina. Despite the significant progress in imaging cone and rod photoreceptor mosaics, visualization of cellular structures in the inner retina has been achieved ...
      Read Full Article
    9. 1-7 of 7
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. About Arlie G. Capps

    Arlie G. Capps

    Arlie G. Capps received the B.S. degree in computer science from Brigham Young University, Provo, UT in 2004. He is currently pursuing the Ph.D. degree in computer science at the University of California, Davis. He is a Lawrence Graduate Scholar at Lawrence Livermore National Laboratory. His research interests include scientific and medical volume visualization, multimodal data fusion, and error quantification and correction.