1. 1-3 of 3
    1. 30/80 MHz Bidirectional Dual-Frequency IVUS Feasibility Evaluated In Vivo and for Stent Imaging

      30/80 MHz Bidirectional Dual-Frequency IVUS Feasibility Evaluated In Vivo and for Stent Imaging

      Although intravascular ultrasound (IVUS) is an important tool in guiding complex coronary interventions, the resolution of existing commercial IVUS devices is considerably poorer than that of optical coherence tomography. Dual-frequency IVUS (DF IVUS), incorporating a second, higher frequency transducer, has been proposed as a possible method of overcoming this limitation. Although preliminary studies have shown that DF IVUS can produce complementary images, including large-scale morphology and high detail of superficial features, it has not yet been determined that this approach would be feasible in a more clinically relevant environment. The purpose of this study was to demonstrate the first in ...

      Read Full Article
    2. Automatic Coronary Wall Segmentation in Intravascular Ultrasound Images Using Binary Morphological Reconstruction

      Automatic Coronary Wall Segmentation in Intravascular Ultrasound Images Using Binary Morphological Reconstruction
      Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to ...
      Read Full Article
    3. High-Resolution Photoacoustic Imaging of Ocular Tissues

      High-Resolution Photoacoustic Imaging of Ocular Tissues
      Abstract: Optical coherence tomography (OCT) and ultrasound (US) are methods widely used for diagnostic imaging of the eye. These techniques detect discontinuities in optical refractive index and acoustic impedance, respectively. Because these both relate to variations in tissue density or composition, OCT and US images share a qualitatively similar appearance. In photoacoustic imaging (PAI), short light pulses are directed at tissues, pressure is generated due to a rapid energy deposition in the tissue volume and thermoelastic expansion results in generation of broadband US. PAI thus depicts optical absorption, which is independent of the tissue characteristics imaged by OCT or US ...
      Read Full Article
    1-3 of 3
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks