1. 1-24 of 156 1 2 3 4 5 6 7 »
    1. In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography

      In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography

      We present a noninvasive phase-variance (pv)–based motion contrast method for depth-resolved imaging of the human chorioretinal complex microcirculation with a newly developed phase-stabilized high speed (100-kHz A-scans/s) 1 - μ m swept-source optical coherence tomography (SSOCT) system. Compared to our previous spectral-domain (spectrometer based) pv-spectral domain OCT (SDOCT) system, this system has the advantages of higher sensitivity, reduced fringe wash-out for high blood flow speeds and deeper penetration in choroid. High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. This process does not require additional calibration hardware and complex numerical procedures. Our phase stabilization ...

      Read Full Article
    2. Dynamic light scattering arising from flowing Brownian particles: analytical model in optical coherence tomography conditions

      Dynamic light scattering arising from flowing Brownian particles: analytical model in optical coherence tomography conditions

      The statistical model of scattered by flowing Brownian particles coherent radiation is suggested. The model includes the random Doppler shifts caused by particle Brownian motion and the speckle fluctuations caused primarily by the flow motion of particles. Analytical expressions are obtained for the correlation function, power spectrum, and spectral width of scattered radiation in the imaging geometry typically used in optical coherence tomography (OCT). It is shown that the spectral density has the Voigt shape, a well-known spectral profile from atomic and molecular spectroscopy. The approach enables the choice of the experimental regimes for the measurement of Brownian particle motion ...

      Read Full Article
    3. Single-shot speckle noise reduction by interleaved optical coherence tomography

      Single-shot speckle noise reduction by interleaved optical coherence tomography

      Speckle noise is one of the dominant factors that degrade image quality in optical coherence tomography (OCT). Here, we propose a new strategy, interleaved OCT (iOCT), for spatial compounding and angular compounding. We demonstrate the efficiency of compounding with iOCT to restrain speckle noise without compromising imaging speed in phantoms and tissue samples.

      Read Full Article
    4. Simultaneous dual-band optical coherence tomography for endoscopic applications

      Simultaneous dual-band optical coherence tomography for endoscopic applications

      Dual-band optical coherence tomography (OCT) can greatly enhance the imaging contrast with potential applications in functional (spectroscopic) analysis. A new simultaneous dual-band Fourier domain mode-locked swept laser configuration for dual-band OCT is reported. It was based on a custom-designed dual-channel driver to synchronize two different wavelength bands at 1310 and 1550 nm, respectively. Two lasing wavelengths were swept simultaneously from 1260 to 1364.8 nm for the 1310-nm band and from 1500 to 1604 nm for the 1550-nm band at an A-scan rate of 45 kHz. Broadband wavelength-division multiplexing was utilized to couple two wavelength bands into a common catheter ...

      Read Full Article
    5. Volumetric full-range magnetomotive optical coherence tomography

      Volumetric full-range magnetomotive optical coherence tomography

      Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of ...

      Read Full Article
    6. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography

      Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography

      Structurally degenerative diseases, such as keratoconus, can significantly alter the stiffness of the cornea, directly affecting the quality of vision. Ultraviolet-induced collagen cross-linking (CXL) effectively increases corneal stiffness and is applied clinically to treat keratoconus. However, measured corneal stiffness is also influenced by intraocular pressure (IOP). Therefore, experimentally measured changes in corneal stiffness may be attributable to the effects of CXL, changes in IOP, or both. We present a noninvasive measurement method using phase-stabilized swept-source optical coherence elastography to distinguish between CXL and IOP effects on measured corneal stiffness. This method compared the displacement amplitude attenuation of a focused air-pulse-induced ...

      Read Full Article
    7. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomograph

      Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomograph

      Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive ...

      Read Full Article
    8. Morphological phenotyping of mouse hearts using optical coherence tomography

      Morphological phenotyping of mouse hearts using optical coherence tomography

      Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of ...

      Read Full Article
    9. Low coherence interferometry approach for aiding fine needle aspiration biopsie

      Low coherence interferometry approach for aiding fine needle aspiration biopsie

      We present portable preclinical low-coherence interference (LCI) instrumentation for aiding fine needle aspiration biopsies featuring the second-generation LCI-based biopsy probe and an improved scoring algorithm for tissue differentiation. Our instrument and algorithm were tested on 38 mice with cultured tumor mass and we show the specificity, sensitivity, and positive predictive value of tumor detection of over 0.89, 0.88, and 0.96, respectively.

      Read Full Article
    10. Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography

      Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography

      The aqueous outflow system (AOS) is responsible for maintaining normal intraocular pressure (IOP) in the eye. Structures of the AOS have an active role in regulating IOP in healthy eyes and these structures become abnormal in the eyes with glaucoma. We describe a newly developed system platform to obtain high-resolution images of the AOS structures. By incorporating spectral domain optical coherence tomography (SD-OCT), the platform allows us to systematically control, image, and quantitate the responses of AOS tissue to pressure with a millisecond resolution of pulsed flow. We use SD-OCT to image radial limbal segments from the surface of the ...

      Read Full Article
    11. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging

      Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging

      A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique ...

      Read Full Article
    12. Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography

      Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography

      Photoimmunotherapy (PIT) is a cell-specific cancer therapy based on an armed antibody conjugate that induces rapid and highly selective cancer cell necrosis after exposure to near-infrared (NIR) light. The PIT treatment also induces the superenhanced permeability and retention effect, which allows high concentrations of nanoparticles to accumulate in the tumor bed. In our pilot studies, optical coherence tomography (OCT) reveals dramatic hemodynamic changes during PIT. We developed and applied speckle variance analysis, Doppler flow measurement, bulk motion removal, and automatic region of interest selection to quantify vessel diameter and blood velocity within tumors in vivo . OCT imaging reveals that blood ...

      Read Full Article
    13. Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography

      Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography

      To research retinal stretching or distortion with accommodation, accommodation-induced changes in retinal thickness (RT) in the macular area were investigated in a population of young adults ( n = 23 ) by using a dual-channel spectral domain optical coherence tomography (SD-OCT) system manufactured in-house for this study. This dual-channel SD-OCT is capable of imaging the cornea and retina simultaneously with an imaging speed of 24 kHz A-line scan rate, which can provide the anatomical dimensions of the eye, including the RT and axial length. Thus, the modification of the RT with accommodation can be calculated. A significant decrease in the RT ( 13.50 ...

      Read Full Article
    14. Visualization of the ocular pulse in the anterior chamber of the mouse eye in vivo using phase-sensitive optical coherence tomography

      Visualization of the ocular pulse in the anterior chamber of the mouse eye in vivo using phase-sensitive optical coherence tomography

      We report on a phase-based method for accurately measuring the ocular pulse in the anterior chamber in vivo . Using phase-sensitive optical coherence tomography with optimized scanning protocols and equations for compensating bulk motion and environmental vibrations, a high sensitivity of 0.9     μ m / s minimal velocity is demonstrated at a wide detection band of 0 to 380 Hz. The pulsatile relative motion between cornea and crystalline lens in rodents is visualized and quantified. The relative motion is most likely caused by respiration (1.6 Hz) and heartbeat (6.6 Hz). The velocity amplitude of the relative motion is 10.3 ...

      Read Full Article
    15. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch

      Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch

      Most studies evaluating the potential of optical coherence tomography (OCT) for the diagnosis of oral cancer are based on visual assessment of OCT B-scans by trained experts. Human interpretation of the large pool of data acquired by modern high-speed OCT systems, however, can be cumbersome and extremely time consuming. Development of image analysis methods for automated and quantitative OCT image analysis could therefore facilitate the evaluation of such a large volume of data. We report automated algorithms for quantifying structural features that are associated with the malignant transformation of the oral epithelium based on image processing of OCT data. The ...

      Read Full Article
    16. User-guided segmentation for volumetric retinal optical coherence tomography images

      User-guided segmentation for volumetric retinal optical coherence tomography images

      Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method ...

      Read Full Article
    17. Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia

      Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia

      Speckle statistics of flowing scatterers have been well documented in the literature. Speckle variance optical coherence tomography exploits the large variance values of intensity changes in time caused mainly by the random backscattering of light resulting from translational activity of red blood cells to map out the microvascular networks. A method to map out the microvasculature malformation of skin based on the time-domain histograms of individual pixels is presented with results obtained from both normal skin and skin containing vascular malformation. Results demonstrated that this method can potentially map out deeper blood vessels and enhance the visualization of microvasculature in ...

      Read Full Article
    18. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography

      Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography

      The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the ...

      Read Full Article
    19. Characterizing the resolvability of real superluminescent diode sources for application to optical coherence tomography using a low coherence interferometry model

      Characterizing the resolvability of real superluminescent diode sources for application to optical coherence tomography using a low coherence interferometry model

      The axial resolution is a critical parameter in determining whether optical coherent tomography (OCT) can be used to resolve specific features in a sample image. Typically, measures of resolution have been attributed to the light source characteristics only, including the coherence length and the point spread function (PSF) width of the OCT light sources. The need to cost effectively visualize the generated PSF and OCT cross-correlated interferogram (A-scan) using many OCT light sources have led to the extrinsic evolution of the OCT simulation model presented. This research indicated that empirical resolution in vivo , as well as depending on the light ...

      Read Full Article
    20. Optical coherence tomography today: speed, contrast, and multimodality

      Optical coherence tomography today: speed, contrast, and multimodality

      In the last 25 years, optical coherence tomography (OCT) has advanced to be one of the most innovative and most successful translational optical imaging techniques, achieving substantial economic impact as well as clinical acceptance. This is largely owing to the resolution improvements by a factor of 10 to the submicron regime and to the imaging speed increase by more than half a million times to more than 5 million A-scans per second, with the latter one accomplished by the state-of-the-art swept source laser technologies that are reviewed in this article. In addition, parallelization of OCT detection, such as line-field and ...

      Read Full Article
    21. Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans

      Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans

      We present an acquisition method for optical coherence elastography (OCE) that enables acquisition of three-dimensional elastograms in 5 s, an order of magnitude faster than previously reported. In this method, based on compression elastography, the mechanical load applied to the sample is altered between acquisitions of consecutive optical coherence tomography volume scans (C-scans). The voxel-by-voxel phase difference between the volumes is used to determine the axial displacement and determining the gradient of the axial displacement versus depth gives the local axial strain. We demonstrate sub-100-microstrain sensitivity and high contrast in elastograms, acquired in 5 s, of structured phantoms and freshly ...

      Read Full Article
    22. Special section guest editorial: selected topics in biophotonics: optical coherence tomography and biomolecular imaging with coherent Raman scattering microscopy

      Special section guest editorial: selected topics in biophotonics: optical coherence tomography and biomolecular imaging with coherent Raman scattering microscopy

      The Special Section on Selected Topics in Biophotonics: Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy comprises two invited review papers and several contributed papers from the summer school Biophotonics ’13, as well as contributed papers within this general scope.

      Read Full Article
    23. Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography

      Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography

      Optical mapping (OM) of cardiac electrical activity conventionally collects information from a three-dimensional (3-D) surface as a two-dimensional (2-D) projection map. When applied to measurements of the embryonic heart, this method ignores the substantial and complex curvature of the heart surface, resulting in significant errors when calculating conduction velocity, an important electrophysiological parameter. Optical coherence tomography (OCT) is capable of imaging the 3-D structure of the embryonic heart and accurately characterizing the surface topology. We demonstrate an integrated OCT/OM imaging system capable of simultaneous conduction mapping and 3-D structural imaging. From these multimodal data, we obtained 3-D activation maps ...

      Read Full Article
    24. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images

      Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images

      Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly challenging because of the difficulty in differentiating between noise and the information components of the speckle pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented. The proposed method explores self-similarities of OCT images based on rotation-invariant features of image patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method can provide sufficient speckle reduction while preserving image details ...

      Read Full Article
    1-24 of 156 1 2 3 4 5 6 7 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks