Mitigating the effects of choroidal hyper- and hypo-transmission defects on choroidal vascularity index assessments using optical coherence tomography

Background: Changes in choroidal vascularity index (CVI) are associated with multiple choroid-related ocular diseases. CVI is calculated as the area/volume ratio of vessels in the choroid, which could be affected by alterations in regional signal intensities due to hypo-transmission defects (hypoTDs) caused by drusen and retinal pigment epithelium (RPE) detachments, and hyper-transmission defects (hyperTDs) caused by the absence of RPE. To develop a simulation model to verify the CVI assessments in eyes with hyper/hypoTDs and demonstrate that accurate CVIs can be achieved after attenuation correction on swept-source optical coherence tomography (SS-OCT). Methods: A simulation model was developed on ...