1. 1-24 of 579 1 2 3 4 ... 23 24 25 »
    1. Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging

      Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging

      While colonoscopy is the gold standard for diagnosis and classification of colorectal cancer (CRC), its sensitivity and specificity are operator-dependent and are especially poor for small and flat lesions. Contemporary imaging modalities, such as optical coherence tomography (OCT) and near-infrared (NIR) fluorescence, have been investigated to visualize microvasculature and morphological changes for detecting early stage CRC in the gastrointestinal (GI) tract. In our study, we developed a multimodal endoscopic system with simultaneous co-registered OCT and NIR fluorescence imaging. By introducing a contrast agent into the vascular network, NIR fluorescence is able to highlight the cancer-suspected area based on significant change ...

      Read Full Article
    2. Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging

      Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging

      We report a novel design and operation of a highly integrated miniature handheld OCT probe, with high-speed angiography function that can be used in clinical settings for young children and infants, providing rapid, non-invasive structural and angiographic imaging of the retina and choroid. The imaging system is operated at 200 kHz, with 3D OCT and OCTA scan time of 0.8 and 3.2 seconds, respectively, and the scanning angle on the pupil is ± 36°, covering the full perifoveal region. Operator assisting features of the direct-view iris camera and on-probe display are integrated into the hand-held probe, and the fixation ...

      Read Full Article
    3. Fourier-domain mode-locked laser combined with a master-oscillator power amplifier architecture

      Fourier-domain mode-locked laser combined with a master-oscillator power amplifier architecture

      Originally introduced in 2005 for high-speed optical coherence tomography, the rapidly wavelength-swept Fourier-domain mode-locked (FDML) laser still, to this day, enables highest imaging speeds through a very high-speed spectral tuning capability. The FDML laser achieves a tuning bandwidth of over 1/10th of its center wavelength and can sweep this entire bandwidth in less than a microsecond. Interestingly, even though it covers a very broad spectral range, instantaneously it has a narrow spectral linewidth that puts it in a unique space compared to other high-speed broadband laser sources, e.g., mode-locked lasers or supercontinuum sources. Although it has been applied ...

      Read Full Article
      Mentions: Bahram Jalali UCLA
    4. Optical computing optical coherence tomography with conjugate suppression by dispersion

      Optical computing optical coherence tomography with conjugate suppression by dispersion

      For all imaging techniques, such as optical coherence tomography (OCT), fast imaging speed is always of high demand. Optical computing OCT ( OC2T) has achieved ultrahigh speed for real time 3D imaging without post data processing, but its spatial resolution is lowered down due to an imperfect Fourier transformation in the optical computing process. In this Letter, we illustrate the theory of OC2T and prove that the dispersion imbalance between reference arm and sample arm may be introduced to improve the resolution. Furthermore, this novel OC2T technique can also enable a conjugate restrained OCT imaging without any data processing, achieving ∼ 2 ...

      Read Full Article
    5. Parallel detection of Jones-matrix elements in polarization-sensitive optical coherence tomography

      Parallel detection of Jones-matrix elements in polarization-sensitive optical coherence tomography

      The polarization properties of a sample can be characterized using a Jones matrix. To measure the Jones matrix without assumptions of the sample, two different incident states of polarization are usually used. This requirement often causes certain drawbacks in polarization-sensitive optical coherence tomography (PS-OCT), e.g., a decrease in the effective A-scan rate or axial depth range, if a multiplexing scheme is used. Because both the A-scan rate and axial depth range are important for clinical applications, including the imaging of an anterior eye segment, a new PS-OCT method that does not have these drawbacks is desired. Here, we present ...

      Read Full Article
    6. Near-infrared supercontinuum source by intracavity silica-based highly-nonlinear fiber

      Near-infrared supercontinuum source by intracavity silica-based highly-nonlinear fiber

      Near-infrared supercontinuum generation by using silica-based highly-nonlinear fiber placed inside of the ring-cavity of an erbium-doped fiber laser pulsed by mode-locking is experimentally demonstrated. Only one erbium-doped fiber amplifier is employed to generate supercontinuum with a spectral width as long as 830 nm (from 1205 to 2035 nm) and a spectral power higher than − 30    dBm / nm −30  dBm/nm . To generate supercontinuum, it is not necessary a second amplifier to raise the power of the laser pulses coupled into the nonlinear fiber. Moreover, all the devices employed are commercial and available at any photonics laboratory. To the best of ...

      Read Full Article
    7. Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography

      Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography

      Full-field swept-source optical coherence tomography (FF-SS-OCT) provides high-resolution depth-resolved images of the sample by parallel Fourier-domain interferometric detection. Although FF-SS-OCT implements high-speed volumetric imaging, it suffers from the cross-talk-generated noise from spatially coherent lasers. This noise reduces the transversal image resolution, which in turn, limits the wide adaptation of FF-SS-OCT for practical and clinical applications. Here, we introduce the novel spatiotemporal optical coherence (STOC) manipulation. In STOC the time-varying inhomogeneous phase masks are used to modulate the light incident on the sample. By properly adjusting these phase masks, the spatial coherence can be reduced. Consequently, the cross-talk-generated noise is suppressed ...

      Read Full Article
    8. En face optical coherence tomography: a technology review [Invited]

      En face optical coherence tomography: a technology review [Invited]

      A review on the technological development of en face optical coherence tomography (OCT) and optical coherence microscopy (OCM) is provided. The terminology originally referred to time domain OCT, where the preferential scanning was performed in the en face plane. Potentially the fastest realization of en face image recording is full-field OCT, where the full en face plane is illuminated and recorded simultaneously. The term has nowadays been adopted for high-speed Fourier domain approaches, where the en face image is reconstructed from full 3D volumes either by direct slicing or through axial projection in post processing. The success of modern en ...

      Read Full Article
    9. Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography

      Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography

      We present a microscopic image guidance platform for radiofrequency ablation (RFA) using a clinical balloon-catheter-based optical coherence tomography (OCT) system, currently used in the surveillance of Barrett’s esophagus patients. Our integrated thermal therapy delivery and monitoring platform consists of a flexible, customized bipolar RFA electrode array designed for use with a clinical balloon OCT catheter and a processing algorithm to accurately map the thermal coagulation process. Non-uniform rotation distortion was corrected using a feature tracking-based technique, which enables robust, frame-to-frame analysis of the temporal fluctuation of the complex OCT signal. With proper noise calibration, precise delineation of the thermal ...

      Read Full Article
    10. Spectral domain optical coherence tomography with sub-micrometer sensitivity for measurement of central corneal thickness

      Spectral domain optical coherence tomography with sub-micrometer sensitivity for measurement of central corneal thickness

      We demonstrated a method for measurement of central corneal thickness (CCT) with a sub-micrometer sensitivity using a spectral domain optical coherence tomography system without needing a super broad bandwidth light source. By combining the frequency and phase components of Fourier transform, the method is capable of measurement of a large dynamic range with a high sensitivity. Absolute phases are retrieved by comparing the correlations between the detected and simulated interference fringes. The phase unwrapping ability of the present method was quantitatively tested by measuring the displacement of a piezo linear stage. The human CCTs of six volunteers were measured to ...

      Read Full Article
      Mentions: Yi Wang
    11. Supercontinuum noise reduction by fiber undertapering

      Supercontinuum noise reduction by fiber undertapering

      We demonstrate that the Relative Intensity Noise (RIN) of a supercontinuum source can be significantly reduced using the new concept of undertapering, where the fiber is tapered to a diameter that is smaller than the diameter that gives the shortest blue edge, which is typically regarded as the optimum. We show that undertapering allows to control the second zero dispersion wavelength and use it as a soliton barrier to stop the redshifting solitons at a pre-defined wavelength, and thereby strongly reduce the RIN. We demonstrate how undertapering can reduce the spectrally averaged RIN in the optical coherence tomography bands, 500 ...

      Read Full Article
    12. 3-D printed photoreceptor phantoms for evaluating lateral resolution of adaptive optics imaging systems

      3-D printed photoreceptor phantoms for evaluating lateral resolution of adaptive optics imaging systems

      With adaptive optics (AO), optical coherence tomography and scanning laser ophthalmoscopy imaging systems can resolve individual photoreceptor cells in living eyes, due to enhanced lateral spatial resolution. However, no standard test method exists for experimentally quantifying this parameter in ophthalmic AO imagers. Here, we present three-dimensional (3-D) printed phantoms, which enable the measurement of lateral resolution in an anatomically relevant manner. We used two-photon polymerization to fabricate two phantoms, which mimic the mosaic of cone photoreceptor outer segments at multiple retinal eccentricities. With these phantoms, we demonstrated that the resolution of two multimodal AO systems is similar to theoretical predictions ...

      Read Full Article
    13. OCT feature analysis guided artery-vein differentiation in OCTA

      OCT feature analysis guided artery-vein differentiation in OCTA

      Differential artery-vein analysis promises better sensitivity for retinal disease detection and classification. However, clinical optical coherence tomography angiography (OCTA) instruments lack the function of artery-vein differentiation. This study aims to verify the feasibility of using OCT intensity feature analysis to guide artery-vein differentiation in OCTA. Four OCT intensity profile features, including i) ratio of vessel width to central reflex, ii) average of maximum profile brightness, iii) average of median profile intensity, and iv) optical density of vessel boundary intensity compared to background intensity, are used to classify artery-vein source nodes in OCT. A blood vessel tracking algorithm is then employed ...

      Read Full Article
      Mentions: Xincheng Yao
    14. Artifacts in speckle tracking and multi-aperture Doppler OCT imaging of lateral motion

      Artifacts in speckle tracking and multi-aperture Doppler OCT imaging of lateral motion

      In optical coherence tomography (OCT), lateral motion is determined either by speckle tracking or by multi-aperture Doppler OCT. Here we show that both methods may provide incorrect results because, outside the focal plane, non-uniform axial motion is misinterpreted as lateral motion. First, we demonstrate the existence of this artifact by means of a simulation for speckle tracking. Then the physical origin of the artifact and its mathematical relation to defocus and axial motion are explained. It is shown that speckle tracking and multi-aperture Doppler OCT are equally affected by the artifact, which has a considerable effect, even for a defocus ...

      Read Full Article
    15. Iterative wavefront correction for complex spectral domain optical coherence tomography

      Iterative wavefront correction for complex spectral domain optical coherence tomography

      We propose a compact setup for wavefront manipulation in spectral domain optical coherence tomography (OCT). The system can easily be implemented into existing free-space OCT setups through modification of the source path only. We demonstrate complex-valued OCT signal acquisition based on phase shifting combined with iterative optical wavefront shaping, which locally enhances the OCT signal acquired from within a scattering sample. The system lends itself to future imaging studies in strongly scattering media such as biological tissue.

      Read Full Article
    16. Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition

      Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition

      Defocusing, vignetting, and bulk motion degrade the image quality of optical coherence tomography angiography (OCTA) more significantly than structural OCT. The assessment of focus, alignment conditions, and stability of imaging subjects in commercially available OCTA systems are currently based on OCT signal quality alone, without knowledge of OCTA signal quality. This results in low yield rates for further quantification. In this Letter, we developed a novel OCTA platform based on a graphics processing unit (GPU) for a real-time, high refresh rate, B-san-by-B-scan split-spectrum amplitude-decorrelation angiography. The GPU provides a real-time display of both cross-sectional and en face images to assist ...

      Read Full Article
    17. Finger-mounted quantitative micro-elastography

      Finger-mounted quantitative micro-elastography

      We present a finger-mounted quantitative micro-elastography (QME) probe, capable of measuring the elasticity of biological tissue in a format that avails of the dexterity of the human finger. Finger-mounted QME represents the first demonstration of a wearable elastography probe. The approach realizes optical coherence tomography-based elastography by focusing the optical beam into the sample via a single-mode fiber that is fused to a length of graded-index fiber. The fiber is rigidly affixed to a 3D-printed thimble that is mounted on the finger. Analogous to manual palpation, the probe compresses the tissue through the force exerted by the finger. The resulting ...

      Read Full Article
    18. Analysis of spatial resolution in phase-sensitive compression optical coherence elastography

      Analysis of spatial resolution in phase-sensitive compression optical coherence elastography

      Optical coherence elastography (OCE) is emerging as a method to image the mechanical properties of tissue on the microscale. However, the spatial resolution, a main advantage of OCE, has not been investigated and is not trivial to evaluate. To address this, we present a framework to analyze resolution in phase-sensitive compression OCE that incorporates the three main determinants of resolution: mechanical deformation of the sample, detection of this deformation using optical coherence tomography (OCT), and signal processing to estimate local axial strain. We demonstrate for the first time, through close correspondence between experiment and simulation of structured phantoms, that resolution ...

      Read Full Article
    19. Robust deep learning method for choroidal vessel segmentation on swept source optical coherence tomography images

      Robust deep learning method for choroidal vessel segmentation on swept source optical coherence tomography images

      Accurate choroidal vessel segmentation with swept-source optical coherence tomography (SS-OCT) images provide unprecedented quantitative analysis towards the understanding of choroid-related diseases. Motivated by the leading segmentation performance in medical images from the use of deep learning methods, in this study, we proposed the adoption of a deep learning method, RefineNet, to segment the choroidal vessels from SS-OCT images. We quantitatively evaluated the RefineNet on 40 SS-OCT images consisting of ~3,900 manually annotated choroidal vessels regions. We achieved a segmentation agreement (SA) of 0.840 ± 0.035 with clinician 1 (C1) and 0.823 ± 0.027 with clinician 2 (C2 ...

      Read Full Article
    20. Functional retinal imaging using adaptive optics swept-source OCT at 1.6  MHz

      Functional retinal imaging using adaptive optics swept-source OCT at 1.6  MHz

      Objective optical assessment of photoreceptor function may permit earlier diagnosis of retinal disease than current methods such as perimetry, electrophysiology, and clinical imaging. In this work, we describe an adaptive optics (AO) optical coherence tomography (OCT) system designed to measure functional responses of single cones to visible stimuli. The OCT subsystem consisted of a raster-scanning Fourier-domain mode-locked laser that acquires A scans at 1.64 MHz with a center wavelength of 1063 nm and an AO system operating in closed-loop. Analysis of serial volumetric images revealed phase changes of cone photoreceptors consistent with outer segment elongation and proportional to stimulus ...

      Read Full Article
    21. Automated detection of shadow artifacts in optical coherence tomography angiography

      Automated detection of shadow artifacts in optical coherence tomography angiography

      Frequently, when imaging retinal vasculature with optical coherence tomography angiography (OCTA) in diseased eyes, there are unavoidable obstacles to the propagation of light such as vitreous floaters or the pupil boundary. These obstacles can block the optical coherence tomography (OCT) beam and impede the visualization of the underlying retinal microcirculation. Detecting these shadow artifacts is especially important in the quantification of metrics that assess retinal disease progression because they might masquerade as regional perfusion loss. In this work, we present an algorithm to identify shadowed areas in OCTA of healthy subjects as well as patients with diabetic retinopathy, uveitis and ...

      Read Full Article
    22. Local wavefront mapping in tissue using computational adaptive optics OCT

      Local wavefront mapping in tissue using computational adaptive optics OCT

      The identification and correction of wavefront aberrations is often necessary to achieve high-resolution optical images of biological tissues, as imperfections in the optical system and the tissue itself distort the imaging beam. Measuring the localized wavefront aberration provides information on where the beam is distorted and how severely. We have recently developed a method to estimate the single-pass wavefront aberrations from complex optical coherence tomography (OCT) data. Using this method, localized wavefront measurement and correction using computational OCT was performed in ex vivo tissues. The computationally measured wavefront varied throughout the imaged OCT volumes and, therefore, a local wavefront correction ...

      Read Full Article
    23. Single input state polarization-sensitive optical coherence tomography with high resolution and polarization distortion correction

      Single input state polarization-sensitive optical coherence tomography with high resolution and polarization distortion correction

      Abstract: In single input state polarization-sensitive optical coherence tomography (PS-OCT) with high resolution, the imperfections of quarter-wave plate (QWP) and the sensitivity roll-off mismatch between the two detection channels cause unpredictable polarization distortion. We present a correction method based on the Jones matrix modeling of the system. In a single input PS-OCT system working at 840 nm with an axial resolution of ~2.3 μm, the method yielded better estimation of retardation and optic axis orientation with significantly reduced noise level, especially in weakly birefringent samples. Numerical simulations and quantitative imaging of a sample of known birefringence were performed to ...

      Read Full Article
    24. Telecentric broadband objective lenses for optical coherence tomography (OCT) in the context of low uncertainty metrology of freeform optical components: from design to testing for wavefront and telecentricity

      Telecentric broadband objective lenses for optical coherence tomography (OCT) in the context of low uncertainty metrology of freeform optical components: from design to testing for wavefront and telecentricity

      Freeform optical components enable significant advances for optical systems. A major challenge for freeform optics is the current lack of metrology methods with measurement uncertainty on the order of tens of nanometers or less. Towards addressing this challenge, optical coherence tomography (OCT) is a viable technique. In the context of low uncertainty metrology, the design requirements pertaining to the sample arm of an OCT metrology system are explicitly addressed in this paper. Two telecentric, broadband, diffraction limited, custom objective lens designs are presented with their design strategies. One objective lens was fabricated and experimentally tested for wavefront performance and telecentricity ...

      Read Full Article
    1-24 of 579 1 2 3 4 ... 23 24 25 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks