1. 97-120 of 164 « 1 2 3 4 5 6 7 »
    1. Combination of High-Resolution Optical Coherence Tomography and Raman Spectroscopy for Improved Staging and Grading in Bladder Cancer

      Combination of High-Resolution Optical Coherence Tomography and Raman Spectroscopy for Improved Staging and Grading in Bladder Cancer

      We present a combination of optical coherence tomography (OCT) and Raman spectroscopy (RS) for improved diagnosis and discrimination of different stages and grades of bladder cancer ex vivo by linking the complementary information provided by these two techniques. Bladder samples were obtained from biopsies dissected via transurethral resection of the bladder tumor (TURBT). As OCT provides structural information rapidly, it was used as a red-flag technology to scan the bladder wall for suspicious lesions with the ability to discriminate malignant tissue from healthy urothelium. Upon identification of degenerated tissue via OCT, RS was implemented to determine the molecular characteristics via ...

      Read Full Article
    2. Design Considerations for Murine Retinal Imaging Using Scattering Angle Resolved Optical Coherence Tomography

      Design Considerations for Murine Retinal Imaging Using Scattering Angle Resolved Optical Coherence Tomography

      Optical coherence tomography (OCT), an optical imaging approach enabling cross-sectional analysis of turbid samples, is routinely used for retinal imaging in human and animal models of diseases affecting the retina. Scattering angle resolved (SAR-)OCT has previously been demonstrated as offering additional contrast in human studies, but no SAR-OCT system has been reported in detail for imaging the retinas of mice. An optical model of a mouse eye was designed and extended for validity at wavelengths of light around 1310 nm; this model was then utilized to develop a SAR-OCT design for murine retinal imaging. A Monte Carlo technique simulates ...

      Read Full Article
    3. Spectroscopic Optical Coherence Tomography by Using Multiple Multipole Expansion

      Spectroscopic Optical Coherence Tomography by Using Multiple Multipole Expansion

      This paper presents a pre-processing method to remove multiple scattering artifacts in spectroscopic optical coherence tomography (SOCT) using time–frequency analysis approaches. The method uses a multiple multipole expansion approach to model the light fields in SOCT. It is shown that the multiple scattered fields can be characterized by higher order terms of the multiple multipole expansion. Hence, the multiple scattering artifact can thus be eliminated by applying the time–frequency transform on the SOCT measurements characterized by the lower order terms. Simulation and experimental results are presented to show the effectiveness of the proposed pre-processing method

      Read Full Article
    4. Impact of Combination Therapy with Ezetimibe/Simvastatin Treatment on the Neointimal Response to Biodegradable Polymer Biolimus-Eluting Stent Implantation in Patients with Acute Myocardial Infarction: Serial Assessment with Optical Coherence Tomography

      Impact of Combination Therapy with Ezetimibe/Simvastatin Treatment on the Neointimal Response to Biodegradable Polymer Biolimus-Eluting Stent Implantation in Patients with Acute Myocardial Infarction: Serial Assessment with Optical Coherence Tomography

      The aim of this study was to compare the neointimal response at 12-month follow-up between ezetimibe/simvastatin (Vytorin, manufactured by Merck) 10/10 mg and Vytorin 10/40 mg after biodegradable polymer Biolimus-eluting stent (BP-BES) implantation in patients with acute myocardial infarction (AMI). A total of 20 patients requiring revascularization were randomly assigned to receive either Vytorin 10/10 mg (n = 9) or Vytorin 10/40 mg (n = 11). Baseline optical coherence tomography (OCT) was performed after stent implantation, and follow-up OCT was scheduled at 12 months. We performed follow-up OCT in 18 patients (Vytorin 10/10 mg (n = 9 ...

      Read Full Article
    5. Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography

      Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography

      An index-regulation technique functionalized by numerical sampling for direct calibration of the non-linear wavenumber ( k )-domain to a linear domain in spectral domain optical coherence tomography (SD-OCT) is proposed. The objective of the developed method is to facilitate high-resolution identification of microstructures in biomedical imaging. Subjective optical alignments caused by nonlinear sampling of interferograms in the k -domain tend to hinder depth-dependent signal-to-noise ratios (SNR) and axial resolution in SD-OCT. Moreover, the optical-laser-dependent k -domain requires constant recalibrated in accordance with each laser transition, thereby necessitating either hardware or heavy software compensations. As the key feature of the proposed method ...

      Read Full Article
    6. Five-Frame Variable Phase-Shifting Method for Full-Range Spectral-Domain Optical Coherence Tomography

      Five-Frame Variable Phase-Shifting Method for Full-Range Spectral-Domain Optical Coherence Tomography

      In order to achieve a better complex conjugate artifacts (CCA) suppression, we propose a five-frame variable phase-shifting (FVP) method for spectral domain optical coherence tomography (SD-OCT). The traditional five-frame invariant phase-shifting (FIP) method employs five phase shifts correlate with the center wavelength. However, due to the effects of polychromatic errors, the FIP method cannot get excellent CCA suppression. In the present work, we employ FVP method using variable phase shifts which is dependent on all the wavelengths and therefore, theoretically, the system would have no effects of polychromatic errors. This is the reason why the FVP method would achieve better ...

      Read Full Article
    7. Cooperative Three-View Imaging Optical Coherence Tomography for Intraoperative Vascular Evaluation

      Cooperative Three-View Imaging Optical Coherence Tomography for Intraoperative Vascular Evaluation

      Real-time intraoperative optical coherence tomography (OTC) imaging of blood vessels after anastomosis operation can provide important information the vessel, such as patency, flow speed, and thrombosis morphology. Due to the strong scattering and absorption effect of blood, normal OCT imaging suffers from the problem of incomplete cross-sectional view of the vessel under investigation when the diameter is large. In this work, we present a novel cooperative three-view imaging spectral domain optical coherence tomography system for intraoperative exposed vascular imaging. Two more side views (left view and right view) were realized through a customized sample arm optical design and corresponding mechanical ...

      Read Full Article
    8. A Patient-Specific Study Investigating the Relation between Coronary Hemodynamics and Neo-Intimal Thickening after Bifurcation Stenting with a Polymeric Bioresorbable Scaffold

      A Patient-Specific Study Investigating the Relation between Coronary Hemodynamics and Neo-Intimal Thickening after Bifurcation Stenting with a Polymeric Bioresorbable Scaffold

      We present an application of a validated reconstruction methodology for the comparison between patient-specific hemodynamics and neo-intimal thickening at nine months from the intervention. (1) Background: Coronary bifurcation stenting alters the vessel geometry, influencing the local hemodynamics. The evaluation of wall shear stress (WSS) relies on the application of computational fluid dynamics to model its distribution along the coronary tree. The endothelium actively responds to WSS, which triggers eventual cell proliferation to cover the stent struts. (2) Methods: Baseline optical coherence tomography and angiographic data were combined to reconstruct a patient-specific coronary bifurcation with an implanted bioresorbable scaffold and to ...

      Read Full Article
    9. Optical Coherence Tomography Reveals Sigmoidal Crystalline Lens Changes during Accommodation

      Optical Coherence Tomography Reveals Sigmoidal Crystalline Lens Changes during Accommodation

      This study aimed to quantify biometric modifications of the anterior segment (AS) during accommodation and to compare them against changes in both accommodative demand and response. Thirty adults, aged 18–25 years were rendered functionally emmetropic with contact lenses. AS optical coherence tomography (AS-OCT) images were captured along the 180° meridian (Visante, Zeiss Meditec, Jena, Germany) under stimulated accommodative demands (0–4 D). Images were analysed and lens thickness (LT) was measured, applying a refractive index correction of 1.00. Accommodative responses were also measured sequentially through a Badal optical system fitted to an autorefractor (Shin Nippon NVision-K 5001, Rexxam ...

      Read Full Article
    10. Non-Destructive Classification of Diversely Stained Capsicum annuum Seed Specimens of Different Cultivars Using Near-Infrared Imaging Based Optical Intensity Detection

      Non-Destructive Classification of Diversely Stained Capsicum annuum Seed Specimens of Different Cultivars Using Near-Infrared Imaging Based Optical Intensity Detection

      The non-destructive classification of plant materials using optical inspection techniques has been gaining much recent attention in the field of agriculture research. Among them, a near-infrared (NIR) imaging method called optical coherence tomography (OCT) has become a well-known agricultural inspection tool since the last decade. Here we investigated the non-destructive identification capability of OCT to classify diversely stained (with various staining agents) Capsicum annuum seed specimens of different cultivars. A swept source (SS-OCT) system with a spectral band of 1310 nm was used to image unstained control C. annuum seeds along with diversely stained Capsicum seeds, belonging to different cultivar ...

      Read Full Article
    11. Multiple Wavelength Optical Coherence Tomography Assessments for Enhanced Ex Vivo Intra-Cochlear Microstructural Visualization

      Multiple Wavelength Optical Coherence Tomography Assessments for Enhanced Ex Vivo Intra-Cochlear Microstructural Visualization

      The precise identification of intra-cochlear microstructures is an essential otorhinolaryngological requirement to diagnose the progression of cochlea related diseases. Thus, we demonstrated an experimental procedure to investigate the most optimal wavelength range, which can enhance the visualization of ex vivo intra-cochlear microstructures using multiple wavelengths (i.e., 860 nm, 1060 nm, and 1300 nm) based optical coherence tomography (OCT) systems. The high-resolution tomograms, volumetric, and quantitative evaluations obtained from Basilar membrane, organ of Corti, and scala vestibule regions revealed complementary comparisons between the aforementioned three distinct wavelengths based OCT systems. Compared to 860 nm and 1300 nm wavelengths, 1060 nm ...

      Read Full Article
    12. Efficient Deep Learning-Based Automated Pathology Identification in Retinal Optical Coherence Tomography Images

      Efficient Deep Learning-Based Automated Pathology Identification in Retinal Optical Coherence Tomography Images

      We present an automatic method based on transfer learning for the identification of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retinal optical coherence tomography (OCT) images. The algorithm aims to improve the classification performance of retinal OCT images and shorten the training time. Firstly, we remove the last several layers from the pre-trained Inception V3 model and regard the remaining part as a fixed feature extractor. Then, the features are used as input of a convolutional neural network (CNN) designed to learn the feature space shifts. The experimental results on two different retinal OCT images datasets ...

      Read Full Article
    13. A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomograph

      A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomograph

      A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision. The birefringence of ECF is calculated and experimentally measured, which demonstrates the polarization sensitivity of the ECF proposed in the paper is similar to that of SMF. Such a structure can replace the ...

      Read Full Article
    14. Advances in Retinal Optical Imaging

      Advances in Retinal Optical Imaging

      Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT), OCT angiography (OCTA), photoacoustic microscopy (PAM), scanning laser ophthalmoscopy (SLO), adaptive optics (AO), fundus autofluorescence (FAF), and molecular imaging (MI). These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease ...

      Read Full Article
    15. Feasibility of Optical Coherence Tomography (OCT) for Intra-Operative Detection of Blood Flow during Gastric Tube Reconstruction

      Feasibility of Optical Coherence Tomography (OCT) for Intra-Operative Detection of Blood Flow during Gastric Tube Reconstruction

      In this study; an OCT-based intra-operative imaging method for blood flow detection during esophagectomy with gastric tube reconstruction is investigated. Change in perfusion of the gastric tube tissue can lead to ischemia; with a high morbidity and mortality as a result. Anastomotic leakage (incidence 5–20%) is one of the most severe complications after esophagectomy with gastric tube reconstruction. Optical imaging techniques provide for minimal-invasive and real-time visualization tools that can be used in intraoperative settings. By implementing an optical technique for blood flow detection during surgery; perfusion can be imaged and quantified and; if needed; perfusion can be improved ...

      Read Full Article
    16. Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart

      Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart

      Congenital heart defects (CHDs) represent the most common form of human birth defects; approximately one-third of heart defects involve malformations of the outflow tract (OFT). Maternal diabetes increases the risk of CHD by 3–5 fold. During heart organogenesis, little is known about the effects of hyperglycemia on hemodynamics, which are critical to normal heart development. Heart development prior to septation in the chick embryo was studied under hyperglycemic conditions. Sustained hyperglycemic conditions were induced, raising the average plasma glucose concentration from 70 mg/dL to 180 mg/dL, akin to the fasting plasma glucose of a patient with diabetes ...

      Read Full Article
    17. Development and Application of Optical Coherence Tomography (OCT)

      Development and Application of Optical Coherence Tomography (OCT)

      To celebrate the 25th anniversary of the introduction of OCT, the special feature issue entitled “Development and Application of Optical Coherence Tomography (OCT)” had been initiated. OCT originated from low coherence interferometry [ 1 ] and was adapted for tomographic imaging in 1991 [ 2 ]. In OCT, broad bandwidth light is used in order to produce cross-sectional images of turbid and translucent samples with high axial resolution (in the order of a few µm). Thereby, the imaging speed of OCT can be as high as several millions of depth scans (A-scans) per second, which allows for volumetric investigations of dynamic processes [ 3 ]. Nowadays ...

      Read Full Article
    18. Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography

      Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography

      ome forensic in situ investigations, such as those needed in transportation (for aviation, maritime, road, or rail accidents) or for parts working under harsh conditions (e.g., pipes or turbines) would benefit from a method/technique that distinguishes ductile from brittle fractures of metals—as material defects are one of the potential causes of incidents. Nowadays, the gold standard in material studies is represented by scanning electron microscopy (SEM). However, SEM instruments are large, expensive, time-consuming, and lab-based; hence, in situ measurements are impossible. To tackle these issues, we propose as an alternative, lower-cost, sufficiently high-resolution technique, Optical Coherence Tomography ...

      Read Full Article
    19. Actinic Keratosis and Non-Invasive Diagnostic Techniques: An Update

      Actinic Keratosis and Non-Invasive Diagnostic Techniques: An Update

      Actinic keratosis represents the earliest manifestation of non-melanoma skin cancer. Because of their risk of progression to invasive squamous cell carcinoma, an earlier diagnosis and treatment are mandatory. Their diagnosis sometimes could represent a challenge even for expert dermatologists. Dermoscopy, confocal laser microscopy and optical coherence tomography could help clinicians in diagnosis. .

      Read Full Article
    20. Advances in Brain Tumor Surgery for Glioblastoma in Adults

      Advances in Brain Tumor Surgery for Glioblastoma in Adults

      Glioblastoma (GBM) is the most common primary intracranial neoplasia, and is characterized by its extremely poor prognosis. Despite maximum surgery, chemotherapy, and radiation, the histological heterogeneity of GBM makes total eradication impossible, due to residual cancer cells invading the parenchyma, which is not otherwise seen in radiographic images. Even with gross total resection, the heterogeneity and the dormant nature of brain tumor initiating cells allow for therapeutic evasion, contributing to its recurrence and malignant progression, and severely impacting survival. Visual delimitation of the tumor’s margins with common surgical techniques is a challenge faced by many surgeons. In an attempt ...

      Read Full Article
    21. Peripapillary Retinal Nerve Fiber Measurement with Spectral-Domain Optical Coherence Tomography in Age-Related Macular Degeneration

      Peripapillary Retinal Nerve Fiber Measurement with Spectral-Domain Optical Coherence Tomography in Age-Related Macular Degeneration

      Purpose: To evaluate the relationship between the peripapillary retinal nerve fiber layer (RNFL) measurements with Spectral-domain Optical Coherence Tomography (OCT) and Age-related macular degeneration (AMD). Methods: Patients >60 years of age without glaucoma or record of intraocular pressure >21 mmHg and no systemic or intraocular diseases or treatment or surgical intervention that affected the RNFL underwent OCT measurement of the RNFL. The severity of AMD was staged with the Clinical Age-Related Maculopathy Staging System. The relationship between RNFL measurements and AMD stages of one eye per patient was analyzed. Results: Eighty-six eyes (46 patients) with AMD and no glaucoma or ...

      Read Full Article
    22. In Vivo Non-Destructive Monitoring of Capsicum Annuum Seed Growth with Diverse NaCl Concentrations Using Optical Detection Technique

      In Vivo Non-Destructive Monitoring of Capsicum Annuum Seed Growth with Diverse NaCl Concentrations Using Optical Detection Technique

      We demonstrate that optical coherence tomography (OCT) is a plausible optical tool for in vivo detection of plant seeds and its morphological changes during growth. To investigate the direct impact of salt stress on seed germination, the experiment was conducted using Capsicum annuum seeds that were treated with different molar concentrations of NaCl. To determine the optimal concentration for the seed growth, the seeds were monitored for nine consecutive days. In vivo two-dimensional OCT images of the treated seeds were obtained and compared with the images of seeds that were grown using sterile distilled water. The obtained results confirm the ...

      Read Full Article
    23. Special Feature Development and Application of Optical Coherence Tomography (OCT)

      Special Feature Development and Application of Optical Coherence Tomography (OCT)

      To celebrate the 25th anniversary of the introduction of OCT, the special feature issue entitled “Development and Application of Optical Coherence Tomography (OCT)” had been initiated. OCT originated from low coherence interferometry [1] and was adapted for tomographic imaging in 1991 [2]. In OCT, broad bandwidth light is used in order to produce cross-sectional images of turbid and translucent samples with high axial resolution (in the order of a few µm). Thereby, the imaging speed of OCT can be as high as several millions of depth scans (A-scans) per second, which allows for volumetric investigations of dynamic processes [3]. Nowadays ...

      Read Full Article
    24. Non-Destructive Analysis of the Internal Anatomical Structures of Mosquito Specimens Using Optical Coherence Tomography

      Non-Destructive Analysis of the Internal Anatomical Structures of Mosquito Specimens Using Optical Coherence Tomography

      The study of mosquitoes and analysis of their behavior are of crucial importance in the on-going efforts to control the alarming increase in mosquito-borne diseases. Furthermore, a non-destructive and real-time imaging technique to study the anatomical features of mosquito specimens can greatly aid the study of mosquitoes. In this study, we demonstrate the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes. The anatomical features of An. sinensis head, thorax, and abdominal regions, along with the morphology of internal structures, such as foregut, midgut, and hindgut, were studied using OCT imaging. Two-dimensional and three-dimensional ...

      Read Full Article
    97-120 of 164 « 1 2 3 4 5 6 7 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks