Multiple Wavelength Optical Coherence Tomography Assessments for Enhanced Ex Vivo Intra-Cochlear Microstructural Visualization

The precise identification of intra-cochlear microstructures is an essential otorhinolaryngological requirement to diagnose the progression of cochlea related diseases. Thus, we demonstrated an experimental procedure to investigate the most optimal wavelength range, which can enhance the visualization of ex vivo intra-cochlear microstructures using multiple wavelengths (i.e., 860 nm, 1060 nm, and 1300 nm) based optical coherence tomography (OCT) systems. The high-resolution tomograms, volumetric, and quantitative evaluations obtained from Basilar membrane, organ of Corti, and scala vestibule regions revealed complementary comparisons between the aforementioned three distinct wavelengths based OCT systems. Compared to 860 nm and 1300 nm wavelengths, 1060 nm ...