1. 1-24 of 503 1 2 3 4 ... 19 20 21 »
    1. Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications

      Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications

      Significance : Shear wave optical coherence elastography is an emerging technique for characterizing tissue biomechanics that relies on the generation of elastic waves to obtain the mechanical contrast. Various techniques, such as contact, acoustic, and pneumatic methods, have been used to induce elastic waves. However, the lack of higher-frequency components within the elastic wave restricts their use in thin samples. The methods also require moving parts and/or tubing, which therefore limits the extent to which they can be miniaturized. Aim : To overcome these limitations, we propose an all-optical approach using photothermal excitation. Depending on the absorption coefficient of the sample ...

      Read Full Article
    2. Achieving the ideal point spread in swept source OCT

      Achieving the ideal point spread in swept source OCT

      Side lobe artifacts on point spread functions can be traced back to (1) fringe visibility variation across the spectrum, (2) errors in sampling instances, and (3) window functions. We demonstrate signal processing methods for correcting for all three of these issues. These methods require a system calibration step. If the systems slowly age, the recalibration step could be performed in the field with a fixtured target.

      Read Full Article
    3. Selective retina therapy monitoring by speckle variance optical coherence tomography for dosimetry control

      Selective retina therapy monitoring by speckle variance optical coherence tomography for dosimetry control

      Significance: Selective retina therapy (SRT) selectively targets the retinal pigment epithelium (RPE) and reduces negative side effects by avoiding thermal damages of the adjacent photoreceptors, the neural retina, and the choroid. However, the selection of proper laser energy for the SRT is challenging because of ophthalmoscopically invisible lesions in the RPE and different melanin concentrations among patients or even regions within an eye. Aim: We propose and demonstrate SRT monitoring based on speckle variance optical coherence tomography (svOCT) for dosimetry control. Approach: M-scans, time-resolved sequence of A-scans, of ex vivo bovine retina irradiated by 1.7-μs duration laser pulses ...

      Read Full Article
    4. Dimensional characterization of large opaque samples and microdeformations by low coherence interferometry

      Dimensional characterization of large opaque samples and microdeformations by low coherence interferometry

      We report on the application of an interferometric system based on the low-coherence interferometry technique to the dimensional characterization of large opaque mechanical parts as well as microdeformations experienced by them. The implemented scheme is capable of simultaneously measuring very small deformations and relatively large dimensions or thicknesses (several centimeters) of the sample. By applying the chirp Fourier transform algorithm, it was possible to measure changes in thickness with an uncertainty of 0.35  μm when a 7-cm-thick sample was measured. The measurement scheme was implemented in optical fiber, which makes it highly adaptable to industrial conditions. It employs a ...

      Read Full Article
    5. In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke

      In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke

      We used a new multimodal imaging system that combines optical coherence microscopy and brightfield microscopy. Using this in vivo brain monitoring approach and cranial window implantation, we three-dimensionally visualized the vascular network during thrombosis, with high temporal (18 s) and spatial (axial, 2.5  μm; lateral, 2.2  μm) resolution. We used a modified mouse model of photochemical thromboembolic stroke in order to more accurately parallel human stroke. Specifically, we applied green laser illumination to focally occlude a branch of the middle cerebral artery. Despite the recanalization of the superficial arteries at 24 h after stroke, no blood flow was ...

      Read Full Article
    6. Utility of endoscopic anatomical optical coherence tomography in functional rhinoplasty

      Utility of endoscopic anatomical optical coherence tomography in functional rhinoplasty

      Objective measurement of the nasal valve region is valuable for the assessment of functional rhinoplasty surgical outcomes. Anatomical optical coherence tomography (aOCT) is an imaging modality that may be used to obtain real-time, quantitative, and volumetric scans of the nasal airway. We aim to evaluate if volumetric aOCT imaging is useful for the examination of the nasal valve region before and after functional rhinoplasty procedures. aOCT scans of the nasal valves were performed on four cadaveric heads before and after spreader graft and butterfly graft procedures. The resulting aOCT images were compared against video endoscopy images, and the segmented volumes ...

      Read Full Article
      Mentions: Amy L. Oldenburg
    7. Spatiotemporal dynamics of pial collateral blood flow following permanent middle cerebral artery occlusion in a rat model of sensory-based protection: a Doppler optical coherence tomography study

      Spatiotemporal dynamics of pial collateral blood flow following permanent middle cerebral artery occlusion in a rat model of sensory-based protection: a Doppler optical coherence tomography study

      There is a growing recognition regarding the importance of pial collateral flow in the protection from impending ischemic stroke both in preclinical and clinical studies. Collateral flow is also a major player in sensory stimulation-based protection from impending ischemic stroke. Doppler optical coherence tomography has been employed to image spatiotemporal patterns of collateral flow within the dorsal branches of the middle cerebral artery (MCA) as it provides a powerful tool for quantitative in vivo flow parameters imaging (velocity, flux, direction of flow, and radius of imaged branches). It was employed prior to and following dorsal permanent MCA occlusion (pMCAo) in ...

      Read Full Article
    8. Special Section Guest Editorial: Advances in Retinal Imaging

      Special Section Guest Editorial: Advances in Retinal Imaging

      The guest editorial provides an introduction to the Special Section on Advanced Retinal Imaging: Instrumentation, Methods, and Applications. The retina is a peripheral part of the central nerve system (CNS) and shares many similarities with the cerebral cortex. They both have layered anatomy, the same types of functional elements and neurotransmitters, and similar vascular organization and blood-tissue barriers. With far fewer neuronal cell types and simpler anatomical structures, the retina is an excellent target for studying neural circuitry and neurovascular coupling. Meanwhile, approximately 80 percent of information from the outside world is processed as visual perception, 1 and retina-related blindness ...

      Read Full Article
    9. Computed optical coherence microscopy of mouse brain ex vivo

      Computed optical coherence microscopy of mouse brain ex vivo

      The compromise between lateral resolution and usable imaging depth range is a bottleneck for optical coherence tomography (OCT). Existing solutions for optical coherence microscopy (OCM) suffer from either large data size and long acquisition time or a nonideal point spread function. We present volumetric OCM of mouse brain ex vivo with a large depth coverage by leveraging computational adaptive optics (CAO) to significantly reduce the number of OCM volumes that need to be acquired with a Gaussian beam focused at different depths. We demonstrate volumetric reconstruction of ex-vivo mouse brain with lateral resolution of 2.2  μm, axial resolution of ...

      Read Full Article
    10. Coregistered optical coherence tomography and frequency-encoded multispectral imaging for spectrally sparse color imagingv

      Coregistered optical coherence tomography and frequency-encoded multispectral imaging for spectrally sparse color imagingv

      We present a system combining optical coherence tomography (OCT) and multispectral imaging (MSI) for coregistered structural imaging and surface color imaging. We first describe and numerically validate an optimization model to guide the selection of the MSI wavelengths and their relative intensities. We then demonstrate the integration of this model into an all-fiber bench-top system. We implement frequency-domain multiplexing for the MSI to enable concurrent acquisition of both OCT and MSI at OCT acquisition rates. Such a system could be implemented in endoscopic practices to provide multimodal, high-resolution imaging of deep organ structures that are currently inaccessible to standard video ...

      Read Full Article
    11. Etching-enabled extreme miniaturization of graded-index fiber-based optical coherence tomography probes

      Etching-enabled extreme miniaturization of graded-index fiber-based optical coherence tomography probes

      We introduced and validated a method to miniaturize graded-index (GRIN) fiber-based optical coherence tomography (OCT) probes down to 70  μm in diameter. The probes consist in an assembly of single-mode (SM), coreless (CL), and graded-index (GRIN) fibers. We opted for a probe design enabling controlled size reduction by hydrogen fluoride etching. The fabrication approach prevents nonuniform etching for both the GRIN and SM fiber components, while it requires no probe polishing postetching. We found that the miniaturized probes present insignificant loss of sensitivity (∼1  dB) compared to their thicker (125  μm) counterparts. We also showed that their focusing capabilities remain ...

      Read Full Article
    12. Cerebral edema detection in vivo after middle cerebral artery occlusion using swept-source optical coherence tomography

      Cerebral edema detection in vivo after middle cerebral artery occlusion using swept-source optical coherence tomography

      Cerebral edema is a severe complication of ischemic cerebrovascular disease, which can lead to microcirculation compression resulting in additional ischemic damage. Real-time and continuous in vivo imaging techniques for edema detection are of great significance to basic research on cerebral edema. We attempted to monitor the cerebral edema status in rats with middle cerebral artery occlusion (MCAO) over time, using a wide field-of-view swept-source optical coherence tomography (SS-OCT) system. Optical attenuation coefficients (OACs) were calculated by an optimized depth-resolved estimation method, and en face OAC maps covering the whole cortex were obtained. Then, the tissue affected by edema was segmented ...

      Read Full Article
    13. Acousto-optically tuned external-cavity laser diode for optical coherence tomography with continuous wavelet transform

      Acousto-optically tuned external-cavity laser diode for optical coherence tomography with continuous wavelet transform

      We propose an acousto-optically tuned external-cavity laser diode (ECLD) based on the Littrow configuration to expand the wavelength-scanning range and eliminate mechanical motions. The scanning range and tuning rate of our prototype were 68.85 nm and more than 100 kHz, respectively, without any mode hop. Moreover, we implemented this improved ECLD in an optical coherence tomography imaging system and conducted a measurement of the two-dimensional thickness distribution of a thin glass plate via continuous wavelet transform analysis.

      Read Full Article
    14. Submillimeter diameter rotary-pullback fiber-optic endoscope for narrowband red-green-blue reflectance, optical coherence tomography, and autofluorescence in vivo imaging

      Submillimeter diameter rotary-pullback fiber-optic endoscope for narrowband red-green-blue reflectance, optical coherence tomography, and autofluorescence in vivo imaging

      A fiber-based endoscopic imaging system combining narrowband red-green-blue (RGB) reflectance with optical coherence tomography (OCT) and autofluorescence imaging (AFI) has been developed. The system uses a submillimeter diameter rotary-pullback double-clad fiber imaging catheter for sample illumination and detection. The imaging capabilities of each modality are presented and demonstrated with images of a multicolored card, fingerprints, and tongue mucosa. Broadband imaging, which was done to compare with narrowband sources, revealed better contrast but worse color consistency compared with narrowband RGB reflectance. The measured resolution of the endoscopic system is 25  μm in both the rotary direction and the pullback direction. OCT ...

      Read Full Article
    15. In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances

      In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances

      Corneal collagen cross-linking (CXL) strengthens the biomechanical properties of damaged corneas. Quantifying the changes of stiffness due to different CXL protocols is difficult, especially in vivo . A noninvasive elastic wave-based optical coherence elastography system was developed to construct in vivo corneal elasticity maps by excitation of air puff. Biomechanical differences were compared for rabbit corneas given three different CXL protocols while keeping the total energy delivered constant. The Young’s modulus was weaker in corneas treated with higher irradiance levels over shorter durations, and a slight increase of Young’s modulus was present in all groups one week after the ...

      Read Full Article
    16. Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation

      Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation

      The index of refraction ( n ) of materials and/or tissues depends on their physical properties and serves as a source of optical contrast in imaging. The variations of the index of refraction have also been investigated for diagnostic purposes in various fields, such as hematology, oncology, etc., since they can signify disease and cell dynamic changes. Optical coherence tomography (OCT) has been used in the past to measure the index ex vivo . However, most methodologies described in the literature are not appropriate for in vivo imaging since they require either a mirror below the sample or a complicated imaging setup ...

      Read Full Article
    17. Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets

      Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets

      We developed machine learning methods to identify fibrolipidic and fibrocalcific A-lines in intravascular optical coherence tomography (IVOCT) images using a comprehensive set of handcrafted features. We incorporated features developed in previous studies (e.g., optical attenuation and A-line peaks). In addition, we included vascular lumen morphology and three-dimensional (3-D) digital edge and texture features. Classification methods were developed using expansive datasets (∼7000  images), consisting of both clinical in-vivo images and an ex-vivo dataset, which was validated using 3-D cryo-imaging/histology. Conditional random field was used to perform 3-D classification noise cleaning of classification results. We tested various multiclass approaches, classifiers ...

      Read Full Article
    18. Comparison of optical coherence tomography angiography and narrow-band imaging using a bimodal endoscope

      Comparison of optical coherence tomography angiography and narrow-band imaging using a bimodal endoscope

      We present coregistered images of tissue vasculature that allow a direct comparison between the performance of narrow-band imaging (NBI) and optical coherence tomography angiography (OCTA). Images were generated with a bimodal endomicroscope having a size of 15  ×  2.4  ×  3.3  mm 3   (   l   ,   w   ,   h   )   that combines two imaging channels. The white light imaging channel was used to perform NBI, the current gold standard for endoscopic visualization of vessels. The second channel allowed the simultaneous acquisition of optical coherence tomography (OCT) and OCTA images, enabling a three-dimensional (3-D) visualization of morphological as well as functional tissue information. In order ...

      Read Full Article
    19. Impact of velocity gradient in Poiseuille flow on the statistics of coherent radiation scattered by flowing Brownian particles in optical coherence tomography

      Impact of velocity gradient in Poiseuille flow on the statistics of coherent radiation scattered by flowing Brownian particles in optical coherence tomography

      A closed-form expression is obtained for the temporal correlation function of the scattered radiation detected in optical coherence tomography (OCT), taking into account the flow velocity gradient across the OCT detection volume in the suspension of flowing Brownian particles. The analytical approach we use includes both the laser beam and wavefront curvature radii changing over the depth. Also, we compare our results with a previously obtained theoretical model, partially an empirical approach. Our findings suggest the importance of the flow velocity gradient for accurate measurements of flow velocity vector, particle diffusivity, shear-induced diffusion, and potentially other OCT applications.

      Read Full Article
    20. Spatial resolution in dynamic optical coherence elastography

      Spatial resolution in dynamic optical coherence elastography

      Dynamic optical coherence elastography (OCE) tracks elastic wave propagation speed within tissue, enabling quantitative three-dimensional imaging of the elastic modulus. We show that propagating mechanical waves are mode converted at interfaces, creating a finite region on the order of an acoustic wavelength where there is not a simple one-to-one correspondence between wave speed and elastic modulus. Depending on the details of a boundary’s geometry and elasticity contrast, highly complex propagating fields produced near the boundary can substantially affect both the spatial resolution and contrast of the elasticity image. We demonstrate boundary effects on Rayleigh waves incident on a vertical ...

      Read Full Article
    21. Review of methods and applications of attenuation coefficient measurements with optical coherence tomography

      Review of methods and applications of attenuation coefficient measurements with optical coherence tomography

      The optical attenuation coefficient (AC), an important tissue parameter that measures how quickly incident light is attenuated when passing through a medium, has been shown to enable quantitative analysis of tissue properties from optical coherence tomography (OCT) signals. Successful extraction of this parameter would facilitate tissue differentiation and enhance the diagnostic value of OCT. In this review, we discuss the physical and mathematical basis of AC extraction from OCT data, including current approaches used in modeling light scattering in tissue and in AC estimation. We also report on demonstrated clinical applications of the AC, such as for atherosclerotic tissue characterization ...

      Read Full Article
    22. Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration

      Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration

      Age-related macular degeneration (AMD) is a vision-threatening disease that affects the outer retina and choroid of elderly adults. Because photoreceptors are found in the outer retina and rely primarily on the trophic support of the underlying choriocapillaris, imaging of flow or lack thereof in choriocapillaris by optical coherence tomography angiography (OCTA) has great clinical potential in AMD assessment. We introduce a metric using OCTA, named “focal perfusion loss” (FPL) to describe the effects of age and non-neovascular AMD on choriocapillaris flow. Because OCTA imaging of choriocapillaris is vulnerable to artifacts—namely motion, projections, segmentation errors, and shadows—they are removed ...

      Read Full Article
    23. Dynamic programming and automated segmentation of optical coherence tomography images of the neonatal subglottis: enabling efficient diagnostics to manage subglottic stenosis

      Dynamic programming and automated segmentation of optical coherence tomography images of the neonatal subglottis: enabling efficient diagnostics to manage subglottic stenosis

      Subglottic stenosis (SGS) is a challenging disease to diagnose in neonates. Long-range optical coherence tomography (OCT) is an optical imaging modality that has been described to image the subglottis in intubated neonates. A major challenge associated with OCT imaging is the lack of an automated method for image analysis and micrometry of large volumes of data that are acquired with each airway scan (1 to 2 Gb). We developed a tissue segmentation algorithm that identifies, measures, and conducts image analysis on tissue layers within the mucosa and submucosa and compared these automated tissue measurements with manual tracings. We noted small ...

      Read Full Article
    24. Temporal speckle-averaging of optical coherence tomography volumes for in-vivo cellular resolution neuronal and vascular retinal imaging

      Temporal speckle-averaging of optical coherence tomography volumes for in-vivo cellular resolution neuronal and vascular retinal imaging

      It has been recently demonstrated that structures corresponding to the cell bodies of highly transparent cells in the retinal ganglion cell layer could be visualized noninvasively in the living human eye by optical coherence tomography (OCT) via temporal averaging. Inspired by this development, we explored the application of volumetric temporal averaging in mice, which are important models for studying human retinal diseases and therapeutic interventions. A general framework of temporal speckle-averaging (TSA) of OCT and optical coherence tomography angiography (OCTA) is presented and applied to mouse retinal volumetric data. Based on the image analysis, the eyes of mice under anesthesia ...

      Read Full Article
    1-24 of 503 1 2 3 4 ... 19 20 21 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks