1. Articles from PLoS ONE

    plosone.org

  2. 1-24 of 86 1 2 3 4 »
    1. Rapid, Accurate, and Non-Invasive Measurement of Zebrafish Axial Length and Other Eye Dimensions Using SD-OCT Allows Longitudinal Analysis of Myopia and Emmetropization

      Rapid, Accurate, and Non-Invasive Measurement of Zebrafish Axial Length and Other Eye Dimensions Using SD-OCT Allows Longitudinal Analysis of Myopia and Emmetropization

      Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT). We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls) in wild-type and lrp2 zebrafish. Zebrafish ...

      Read Full Article
    2. Subvoxel Accurate Graph Search Using Non-Euclidean Graph Space.

      Subvoxel Accurate Graph Search Using Non-Euclidean Graph Space.

      Graph search is attractive for the quantitative analysis of volumetric medical images, and especially for layered tissues, because it allows globally optimal solutions in low-order polynomial time. However, because nodes of graphs typically encode evenly distributed voxels of the volume with arcs connecting orthogonally sampled voxels in Euclidean space, segmentation cannot achieve greater precision than a single unit, i.e. the distance between two adjoining nodes, and partial volume effects are ignored. We generalize the graph to non-Euclidean space by allowing non-equidistant spacing between nodes, so that subvoxel accurate segmentation is achievable. Because the number of nodes and edges in ...

      Read Full Article
    3. The Application of Optical Coherence Tomography to Image Subsurface Tissue Structure of Antarctic Krill Euphausia superba

      The Application of Optical Coherence Tomography to Image Subsurface Tissue Structure of Antarctic Krill Euphausia superba

      Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to ...

      Read Full Article
    4. Assessment of Choroidal Thickness in Healthy and Glaucomatous Eyes Using Swept Source Optical Coherence Tomography

      Assessment of Choroidal Thickness in Healthy and Glaucomatous Eyes Using Swept Source Optical Coherence Tomography

      Purpose To evaluate choroidal thickness (CT) in healthy and glaucomatous eyes using Swept Source Optical Coherence Tomography (SS-OCT). Methods A cross-sectional observational study of 216 eyes of 140 subjects with glaucoma and 106 eyes of 67 healthy subjects enrolled in the Diagnostic Innovations in Glaucoma Study. CT was assessed from wide-field (12×9 mm) SS-OCT scans. The association between CT and potential confounding variables including age, gender, axial length, intraocular pressure, central corneal thickness and ocular perfusion pressure was examined using univariable and multivariable regression analyses. Results Overall CT was thinner in glaucomatous eyes with a mean (± standard deviation) of ...

      Read Full Article
    5. Peripapillary Retinal Nerve Fiber Layer Assessment of Spectral Domain Optical Coherence Tomography and Scanning Laser Polarimetry to Diagnose Preperimetric Glaucoma

      Peripapillary Retinal Nerve Fiber Layer Assessment of Spectral Domain Optical Coherence Tomography and Scanning Laser Polarimetry to Diagnose Preperimetric Glaucoma

      Purpose To compare the abilities of peripapillary retinal nerve fiber layer (RNFL) parameters of spectral domain optical coherence tomograph (SDOCT) and scanning laser polarimeter (GDx enhanced corneal compensation; ECC) in detecting preperimetric glaucoma. Methods In a cross-sectional study, 35 preperimetric glaucoma eyes (32 subjects) and 94 control eyes (74 subjects) underwent digital optic disc photography and RNFL imaging with SDOCT and GDx ECC. Ability of RNFL parameters of SDOCT and GDx ECC to discriminate preperimetric glaucoma eyes from control eyes was compared using area under receiver operating characteristic curves (AUC), sensitivities at fixed specificities and likelihood ratios (LR). Results AUC ...

      Read Full Article
    6. Analysis of Fundus Shape in Highly Myopic Eyes by Using Curvature Maps Constructed from Optical Coherence Tomography

      Analysis of Fundus Shape in Highly Myopic Eyes by Using Curvature Maps Constructed from Optical Coherence Tomography

      Purpose To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT) image analysis. Methods We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch’s membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. Results The color maps allowed staphyloma visualization as a ring ...

      Read Full Article
    7. Vessel Labeling in Combined Confocal Scanning Laser Ophthalmoscopy and Optical Coherence Tomography Images: Criteria for Blood Vessel Discrimination

      Vessel Labeling in Combined Confocal Scanning Laser Ophthalmoscopy and Optical Coherence Tomography Images: Criteria for Blood Vessel Discrimination

      Introduction The diagnostic potential of optical coherence tomography (OCT) in neurological diseases is intensively discussed. Besides the sectional view of the retina, modern OCT scanners produce a simultaneous top-view confocal scanning laser ophthalmoscopy (cSLO) image including the option to evaluate retinal vessels. A correct discrimination between arteries and veins (labeling) is vital for detecting vascular differences between healthy subjects and patients. Up to now, criteria for labeling (cSLO) images generated by OCT scanners do not exist. Objective This study reviewed labeling criteria originally developed for color fundus photography (CFP) images. Methods The criteria were modified to reflect the cSLO technique ...

      Read Full Article
    8. Discriminating between Glaucoma and Normal Eyes Using Optical Coherence Tomography and the ‘Random Forests’ Classifier

      Discriminating between Glaucoma and Normal Eyes Using Optical Coherence Tomography and the ‘Random Forests’ Classifier

      Purpose To diagnose glaucoma based on spectral domain optical coherence tomography (SD-OCT) measurements using the ‘Random Forests’ method. Methods SD-OCT was conducted in 126 eyes of 126 open angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects. The Random Forests method was then applied to discriminate between glaucoma and normal eyes using 151 OCT parameters including thickness measurements of circumpapillary retinal nerve fiber layer (cpRNFL), the macular RNFL (mRNFL) and the ganglion cell layer-inner plexiform layer combined (GCIPL). The area under the receiver operating characteristic curve (AROC) was calculated using the Random Forests method adopting leave-one-out cross validation ...

      Read Full Article
    9. Relationship between Optical Coherence Tomography and Electrophysiology of the Visual Pathway in Non-Optic Neuritis Eyes of Multiple Sclerosis Patients

      Relationship between Optical Coherence Tomography and Electrophysiology of the Visual Pathway in Non-Optic Neuritis Eyes of Multiple Sclerosis Patients

      Purpose Loss of retinal ganglion cells in in non-optic neuritis eyes of Multiple Sclerosis patients (MS-NON) has recently been demonstrated. However, the pathological basis of this loss at present is not clear. Therefore, the aim of the current study was to investigate associations of clinical (high and low contrast visual acuity) and electrophysiological (electroretinogram and multifocal Visual Evoked Potentials) measures of the visual pathway with neuronal and axonal loss of RGC in order to better understand the nature of this loss. Methods Sixty-two patients with relapsing remitting multiple sclerosis with no previous history of optic neuritis in at least one ...

      Read Full Article
    10. Biometry of Anterior Segment of Human Eye on Both Horizontal and Vertical Meridians during Accommodation Imaged with Extended Scan Depth Optical Coherence Tomography

      Biometry of Anterior Segment of Human Eye on Both Horizontal and Vertical Meridians during Accommodation Imaged with Extended Scan Depth Optical Coherence Tomography

      Purpose To determine the biometry of anterior segment dimensions of the human eye on both horizontal and vertical meridians with extended scan depth optical coherence tomography (OCT) during accommodation. Methods Twenty pre-presbyopic volunteers, aged between 24 and 30, were recruited. The ocular anterior segment of each subject was imaged using an extended scan depth OCT under non- and 3.0 diopters (D) of accommodative demands on both horizontal and vertical meridians. All the images were analyzed to yield the following parameters: pupil diameter (PD), anterior chamber depth (ACD), anterior and posterior surface curvatures of the crystalline lens (ASC and PSC ...

      Read Full Article
    11. Feasibility of the Assessment of Cholesterol Crystals in Human Macrophages Using Micro Optical Coherence Tomography

      Feasibility of the Assessment of Cholesterol Crystals in Human Macrophages Using Micro Optical Coherence Tomography

      The presence of cholesterol crystals is a hallmark of atherosclerosis, but until recently, such crystals have been considered to be passive components of necrotic plaque cores. Recent studies have demonstrated that phagocytosis of cholesterol crystals by macrophages may actively precipitate plaque progression via an inflammatory pathway, emphasizing the need for methods to study the interaction between macrophages and crystalline cholesterol. In this study, we demonstrate the feasibility of detecting cholesterol in macrophages in situ using Micro-Optical Coherence Tomography (µOCT), an imaging modality we have recently developed with 1-µm resolution. Macrophages containing cholesterol crystals frequently demonstrated highly scattering constituents in ...

      Read Full Article
    12. Enhanced Vitreous Imaging in Healthy Eyes Using Swept Source Optical Coherence Tomography

      Enhanced Vitreous Imaging in Healthy Eyes Using Swept Source Optical Coherence Tomography

      Purpose To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT). The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR) display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display. Design Observational prospective cross-sectional study. Methods Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm 2 ) were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration ...

      Read Full Article
    13. Validation of Airway Wall Measurements by Optical Coherence Tomography in Porcine Airways

      Validation of Airway Wall Measurements by Optical Coherence Tomography in Porcine Airways

      Examining and quantifying changes in airway morphology is critical for studying longitudinal pathogenesis and interventions in diseases such as chronic obstructive pulmonary disease and asthma. Here we present fiber-optic optical coherence tomography (OCT) as a nondestructive technique to precisely and accurately measure the 2-dimensional cross-sectional areas of airway wall substructure divided into the mucosa (WA muc ), submucosa (WA sub ), cartilage (WA cart ), and the airway total wall area (WAt). Porcine lung airway specimens were dissected from freshly resected lung lobes (N = 10). Three-dimensional OCT imaging using a fiber-optic rotary-pullback probe was performed immediately on airways greater than 0.9 mm ...

      Read Full Article
    14. Towards a Quantitative OCT Image Analysis

      Towards a Quantitative OCT Image Analysis

      Background Optical coherence tomography (OCT) is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study. Methods Spectral-Domain Optical Coherence Tomography (OCT), confocal Scanning-La­ser ...

      Read Full Article
    15. Choroidal Haller's and Sattler's Layer Thickness Measurement Using 3-Dimensional 1060-nm Optical Coherence Tomography

      Choroidal Haller's and Sattler's Layer Thickness Measurement Using 3-Dimensional 1060-nm Optical Coherence Tomography

      Objectives To examine the feasibility of automatically segmented choroidal vessels in three-dimensional (3D) 1060-nmOCT by testing repeatability in healthy and AMD eyes and by mapping Haller's and Sattler's layer thickness in healthy eyes Methods Fifty-five eyes (from 45 healthy subjects and 10 with non-neovascular age-related macular degeneration (AMD) subjects) were imaged by 3D-1060-nmOCT over a 36°x36° field of view. Haller's and Sattler's layer were automatically segmented, mapped and averaged across the Early Treatment Diabetic Retinopathy Study grid. For ten AMD eyes and ten healthy eyes, imaging was repeated within the same session and on another ...

      Read Full Article
    16. Multimodality Imaging Methods for Assessing Retinoblastoma Orthotopic Xenograft Growth and Development

      Multimodality Imaging Methods for Assessing Retinoblastoma Orthotopic Xenograft Growth and Development

      Genomic studies of the pediatric ocular tumor retinoblastoma are paving the way for development of targeted therapies. Robust model systems such as orthotopic xenografts are necessary for testing such therapeutics. One system involves bioluminescence imaging of luciferase-expressing human retinoblastoma cells injected into the vitreous of newborn rat eyes. Although used for several drug studies, the spatial and temporal development of tumors in this model has not been documented. Here, we present a new model to allow analysis of average luciferin flux ( ) through the tumor, a more biologically relevant parameter than peak bioluminescence as traditionally measured. Moreover, we monitored the spatial ...

      Read Full Article
    17. Central and midperipheral corneal thickness measured with scheimpflug imaging and optical coherence tomography

      Central and midperipheral corneal thickness measured with scheimpflug imaging and optical coherence tomography

      Purpose To compare corneal thickness measurements using Pentacam (Oculus, Germany), Sirius (CSO, Italy), Galilei (Ziemer, Switzerland), and RTVue-100 OCT (Optovue Inc., USA). Methods Sixty-six eyes of 66 healthy volunteers were enrolled. Three consecutive measurements were performed with each device. The mean value of the three measurements was used for subsequent analysis. Central corneal thickness (CCT), thinnest corneal thickness (TCT), and midperipheral corneal thickness (MPCT; measured at superior, inferior, nasal, and temporal locations with a distance of 1 mm (CT 2mm ) or 2.5 mm (CT 5mm ) from the corneal apex) were analyzed. Differences and agreement between measurements were assessed using ...

      Read Full Article
    18. Vertical and Horizontal Corneal Epithelial Thickness Profile Using Ultra-High Resolution and Long Scan Depth Optical Coherence Tomography

      Vertical and Horizontal Corneal Epithelial Thickness Profile Using Ultra-High Resolution and Long Scan Depth Optical Coherence Tomography

      Purpose To determine the vertical and horizontal thickness profiles of the corneal epithelium in vivo using ultra-long scan depth and ultra-high resolution spectral domain optical coherence tomography (SD-OCT). Methods A SD-OCT was developed with an axial resolution of ~3.3 µm in tissue and an extended scan depth. Forty-two eyes of 21 subjects were imaged twice. The entire horizontal and vertical corneal epithelial thickness profiles were evaluated. The coefficient of repeatability (CoR) and intraclass correlation (ICC) of the tests and interobserver variability were analyzed. Results The full width of the horizontal epithelium was detected, whereas part of the superior epithelium ...

      Read Full Article
    19. Mapping Intravascular Ultrasound Controversies in Interventional Cardiology Practice

      Mapping Intravascular Ultrasound Controversies in Interventional Cardiology Practice

      Intravascular ultrasound is a catheter-based imaging modality that was developed to investigate the condition of coronary arteries and assess the vulnerability of coronary atherosclerotic plaques in particular. Since its introduction in the clinic 20 years ago, use of intravascular ultrasound innovation has been relatively limited. Intravascular ultrasound remains a niche technology; its clinical practice did not vastly expand, except in Japan, where intravascular ultrasound is an appraised tool for guiding percutaneous coronary interventions. In this qualitative research study, we follow scholarship on the sociology of innovation in exploring both the current adoption practices and perspectives on the future of intravascular ...

      Read Full Article
    20. A Simplified Method to Measure Choroidal Thickness Using Adaptive Compensation in Enhanced Depth Imaging Optical Coherence Tomography

      A Simplified Method to Measure Choroidal Thickness Using Adaptive Compensation in Enhanced Depth Imaging Optical Coherence Tomography

      Purpose To evaluate a simplified method to measure choroidal thickness (CT) using commercially available enhanced depth imaging (EDI) spectral domain optical coherence tomography (SD-OCT). Methods We measured CT in 31 subjects without ocular diseases using Spectralis EDI SD-OCT. The choroid-scleral interface of the acquired images was first enhanced using a post-processing compensation algorithm. The enhanced images were then analysed using Photoshop. Two graders independently graded the images to assess inter-grader reliability. One grader re-graded the images after 2 weeks to determine intra-grader reliability. Statistical analysis was performed using intra-class correlation coefficient (ICC) and Bland-Altman plot analyses. Results Using adaptive compensation ...

      Read Full Article
    21. Spectral-Domain Optical Coherence Tomography of the Rodent Eye: Highlighting Layers of the Outer Retina Using Signal Averaging and Comparison with Histology

      Spectral-Domain Optical Coherence Tomography of the Rodent Eye: Highlighting Layers of the Outer Retina Using Signal Averaging and Comparison with Histology

      Spectral-Domain Optical Coherence Tomography (SD-OCT) is a widely used method to observe retinal layers and follow pathological events in human. Recently, this technique has been adapted for animal imaging. This non-invasive technology brings a cross-sectional visualization of the retina, which permits to observe precisely each layer. There is a clear expansion of the use of this imaging modality in rodents, thus, a precise characterization of the different outer retinal layers observed by SD-OCT is now necessary to make the most of this technology. The identification of the inner strata until the outer nuclear layer has already been clearly established, while ...

      Read Full Article
      Mentions: Michel Pâques
    22. Non-Invasive Detection of Early Retinal Neuronal Degeneration by Ultrahigh Resolution Optical Coherence Tomography

      Non-Invasive Detection of Early Retinal Neuronal Degeneration by Ultrahigh Resolution Optical Coherence Tomography

      Optical coherence tomography (OCT) has revolutionises the diagnosis of retinal disease based on the detection of microscopic rather than subcellular changes in retinal anatomy. However, currently the technique is limited to the detection of microscopic rather than subcellular changes in retinal anatomy. However, coherence based imaging is extremely sensitive to both changes in optical contrast and cellular events at the micrometer scale, and can generate subtle changes in the spectral content of the OCT image. Here we test the hypothesis that OCT image speckle (image texture) contains information regarding otherwise unresolvable features such as organelle changes arising in the early ...

      Read Full Article
    23. Reproducibility of In-Vivo OCT Measured Three-Dimensional Human Lamina Cribrosa Microarchitecture

      Reproducibility of In-Vivo OCT Measured Three-Dimensional Human Lamina Cribrosa Microarchitecture

      Purpose To determine the reproducibility of automated segmentation of the three-dimensional (3D) lamina cribrosa (LC) microarchitecture scanned in-vivo using optical coherence tomography (OCT). Methods Thirty-nine eyes (8 healthy, 19 glaucoma suspects and 12 glaucoma) from 49 subjects were scanned twice using swept-source (SS−) OCT in a 3.5×3.5×3.64 mm (400×400×896 pixels) volume centered on the optic nerve head, with the focus readjusted after each scan. The LC was automatically segmented and analyzed for microarchitectural parameters, including pore diameter, pore diameter standard deviation (SD), pore aspect ratio, pore area, beam thickness, beam thickness SD, and ...

      Read Full Article
    24. Vitreous Hyper-Reflective Dots in Optical Coherence Tomography and Cystoid Macular Edema after Uneventful Phacoemulsification Surgery

      Vitreous Hyper-Reflective Dots in Optical Coherence Tomography and Cystoid Macular Edema after Uneventful Phacoemulsification Surgery

      Purpose To report the observation of hyper-reflective dots in the vitreous cavity using spectral domain optical coherence tomography (SD-OCT) after uneventful phacoemulsification cataract surgery and to investigate their association with cystoid macular edema (CME). Materials and Methods Medical records of consecutive Asian patients who had no preoperative retinopathy and underwent uneventful phacoemulsification cataract surgery from March 2012 through February 2013 were reviewed. SD-OCTs were performed before, 1 week, and 1 month after surgery. The number of vitreous hyper-reflective dots (VHDs) was counted in 5 OCT images of high-definition 5-line raster scans. The development of CME was assessed using postoperative 1-month ...

      Read Full Article
    1-24 of 86 1 2 3 4 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks