1. Articles from opticsinfobase.org

  2. 1-24 of 1217 1 2 3 4 ... 49 50 51 »
    1. Complete 360° circumferential gonioscopic optical coherence tomography imaging of the iridocorneal angle

      Complete 360° circumferential gonioscopic optical coherence tomography imaging of the iridocorneal angle

      Clinically, gonioscopy is used to provide en face views of the ocular angle. The angle has been imaged with optical coherence tomography (OCT) through the corneoscleral limbus but is currently unable to image the angle from within the ocular anterior chamber. We developed a novel gonioscopic OCT system that images the angle circumferentially from inside the eye through a custom, radially symmetric, gonioscopic contact lens. We present, to our knowledge, the first 360° circumferential volumes (two normal subjects, two subjects with pathology) of peripheral iris and iridocorneal angle structures obtained via an internal approach not typically available in the clinic.

      Read Full Article
    2. Fibre-coupled multiphoton microscope with adaptive motion compensation

      Fibre-coupled multiphoton microscope with adaptive motion compensation

      To address the challenge of sample motion during in vivo imaging, we present a fibre-coupled multiphoton microscope with active axial motion compensation. The position of the sample surface is measured using optical coherence tomography and fed back to a piezo actuator that adjusts the axial location of the objective to compensate for sample motion. We characterise the system’s performance and demonstrate that it can compensate for axial sample velocities up to 700 µm/s. Finally we illustrate the impact of motion compensation when imaging multiphoton excited autofluorescence in ex vivo mouse skin.

      Read Full Article
    3. Quantitative single-mode fiber based PS-OCT with single input polarization state using Mueller matrix

      Quantitative single-mode fiber based PS-OCT with single input polarization state using Mueller matrix

      We present a simple but effective method to quantitatively measure the birefringence of tissue by an all single-mode fiber (SMF) based polarization-sensitive optical coherence tomography (PS-OCT) with single input polarization state. We theoretically verify that our SMF based PS-OCT system can quantify the phase retardance and optic axis orientation after a simple calibration process using a quarter wave plate (QWP). Based on the proposed method, the quantification of the phase retardance and optic axis orientation of a Berek polarization compensator and biological tissues were demonstrated.

      Read Full Article
    4. Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography

      Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography

      Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation.

      Read Full Article
    5. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber

      Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber

      We present an ultra-thin fiber-body endoscopy probe for optical coherence tomography (OCT) which is based on a stepwise transitional core (STC) fiber. In a minimalistic design, our probe was made of spliced specialty fibers that could be directly used for beam probing optics without using a lens. In our probe, the OCT light delivered through a single-mode fiber was efficiently expanded to a large mode field of 24 μm diameter for a low beam divergence. The size of our probe was 85 μm in the probe’s diameter while operated in a 160-μm thick protective tubing. Through theoretical and ...

      Read Full Article
    6. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

      Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

      Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We ...

      Read Full Article
    7. Extraction of linear anisotropic parameters using optical coherence tomography and hybrid Mueller matrix formalism

      Extraction of linear anisotropic parameters using optical coherence tomography and hybrid Mueller matrix formalism

      A method is proposed for extracting the linear birefringence (LB) and linear dichroism (LD) properties of an anisotropic optical sample using reflection-mode optical coherence tomography (OCT) and a hybrid Mueller matrix formalism. To ensure the accuracy of the extracted parameter values, a method is proposed for calibrating and compensating the polarization distortion effect induced by the beam splitters in the OCT system using a composite quarter-waveplate / half-waveplate / quarter-waveplate structure. The validity of the proposed method is confirmed by extracting the LB and LD properties of a quarter-wave plate and a defective polarizer. To the best of the authors’ knowledge, the ...

      Read Full Article
    8. Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography

      Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography

      We propose methods to align interferograms affected by trigger jitter to a reference interferogram based on the information (amplitude/phase) at a fixed-pattern noise location to reduce residual fixed-pattern noise and improve the phase stability of swept source optical coherence tomography (SS-OCT) systems. One proposed method achieved this by introducing a wavenumber shift (k-shift) in the interferograms of interest and searching for the k-shift that minimized the fixed-pattern noise amplitude. The other method calculated the relative k-shift using the phase information at the residual fixed-pattern noise location. Repeating this wavenumber alignment procedure for all A-lines of interest produced fixed-pattern noise ...

      Read Full Article
    9. Impact of motion-associated noise on intrinsic optical signal imaging in humans with optical coherence tomography

      Impact of motion-associated noise on intrinsic optical signal imaging in humans with optical coherence tomography

      A growing body of evidence suggests that phototransduction can be studied in the human eye in vivo by imaging of fast intrinsic optical signals (IOS). There is consensus concerning the limiting influence of motion-associated imaging noise on the reproducibility of IOS-measurements, especially in those employing spectral-domain optical coherence tomography (SD-OCT). However, no study to date has conducted a comprehensive analysis of this noise in the context of IOS-imaging. In this study, we discuss biophysical correlates of IOS, and we address motion-associated imaging noise by providing correctional post-processing methods. In order to avoid cross-talk of adjacent IOS of opposite signal polarity ...

      Read Full Article
      Mentions: Barry Cense
    10. Ultra-high resolution Fourier domain optical coherence tomography for old master paintings

      Ultra-high resolution Fourier domain optical coherence tomography for old master paintings

      In the last 10 years, Optical Coherence Tomography (OCT) has been successfully applied to art conservation, history and archaeology. OCT has the potential to become a routine non-invasive tool in museums allowing cross-section imaging anywhere on an intact object where there are no other methods of obtaining subsurface information. While current commercial OCTs have shown potential in this field, they are still limited in depth resolution (> 4 μm in paint and varnish) compared to conventional microscopic examination of sampled paint cross-sections (~1 μm). An ultra-high resolution fiber-based Fourier domain optical coherence tomography system with a constant axial resolution of 1 ...

      Read Full Article
    11. In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents

      In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents

      In vivo photothermal optical coherence tomography (OCT) is demonstrated for cross-sectional imaging of endogenous absorption agents. In order to compromise the sensitivity, imaging speed, and sample motion immunity, a new photothermal detection scheme and phase processing method are developed. Phase-resolved swept-source OCT and fiber-pigtailed laser diode (providing excitation at 406 nm) are combined to construct a high-sensitivity photothermal OCT system. OCT probe and excitation beam coaxially illuminate and are focused on tissues. The photothermal excitation and detection procedure is designed to obtain high efficiency of photothermal effect measurement. The principle and method of depth-resolved cross-sectional imaging of absorption agents with ...

      Read Full Article
    12. Automatic estimation of noise parameters in Fourier-domain optical coherence tomography cross sectional images using statistical information

      Automatic estimation of noise parameters in Fourier-domain optical coherence tomography cross sectional images using statistical information

      Steiner, Patrick; Kowal, Jens H; Pova?ay, Boris; Meier, Christoph; Sznitman, We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for ...

      Read Full Article
    13. Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer

      Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer

      In this study we demonstrate ultrahigh-resolution spectral domain optical coherence tomography (UHR SD-OCT) with a linear-wavenumber (k) spectrometer, to accelerate signal processing and to display two-dimensional (2-D) images in real time. First, we performed a numerical simulation to find the optimal parameters for the linear-k spectrometer to achieve ultrahigh axial resolution, such as the number of grooves in a grating, the material for a dispersive prism, and the rotational angle between the grating and the dispersive prism. We found that a grating with 1200 grooves and an F2 equilateral prism at a rotational angle of 26.07°, in combination with ...

      Read Full Article
    14. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source

      4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source

      We demonstrate the use of an ultra-high-speed swept-source optical coherence tomography (OCT) to achieve optical micro-angiography (OMAG) of microcirculatory tissue beds in vivo . The system is based on a 1310-nm Fourier domain mode-locking (FDML) laser with 1.6-MHz A-line rate, providing a frame rate of 3.415 KHz, an axial resolution of ∼ 10     μ m and signal to noise ratio of 102 dB. Motion from blood flow causes change in OCT signals between consecutive B-frames acquired at the same location. Intensity-based inter-frame subtraction algorithm is applied to extract blood flow from tissue background without any motion correction. We demonstrate the capability ...

      Read Full Article
    15. Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases

      Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases

      Gabor-domain optical coherence microscopy (GD-OCM) was applied ex vivo in the investigation of corneal cells and their surrounding microstructures with particular attention to the corneal endothelium. Experiments using fresh pig eyeballs, excised human corneal buttons from patients with Fuchs’ endothelial dystrophy (FED), and healthy donor corneas were conducted. Results show in a large field of view ( 1     mm × 1     mm ) high definition images of the different cell types and their surrounding microstructures through the full corneal thickness at both the central and peripheral locations of porcine corneas. Particularly, an image of the endothelial cells lining the bottom of the cornea ...

      Read Full Article
    16. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel

      1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel

      We have developed a spectroscopic optical coherence tomography (OCT) for imaging lipid distribution within blood vessel in order to detect coronary artery plaque. A 1.7-μm spectral-domain OCT with A-scan rate of 47 kHz is fabricated using a broadband light source based on super-luminescent diodes and spectrometers based on extended InGaAs line sensors. We demonstrate imaging of lipid distribution in an in vitro artery model with lipid. The sensitivity and specificity in the differentiation between artery and lipid are 87% and 90% in the training, respectively. The validation test also shows detection of lipid with an accuracy over 90%.

      Read Full Article
    17. Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins

      Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins

      In this paper, we demonstrate the possibility to reconstruct the actual blood flow velocity vector field in retinal microvessels from dual-beam bidirectional Doppler optical coherence tomography measurements. First, for a better understanding of measured phase patterns, several flow situations were simulated on the basis of the known dual beam measurement geometry. We were able to extract the vector field parameters that determine the measured phase pattern, allowing for the development of an algorithm to reconstruct the velocity vector field from measured phase data. In a next step, measurements were performed at a straight vessel section and at a venous convergence ...

      Read Full Article
    18. Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels

      Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels

      Non-local means (NLM) filter is one of the state-of-the-art denoising filters. It exploits the presence of similar features in an image and averages those similar features to remove noise. However, a conventional NLM filter shows somewhat inferior performance of noise reduction around edges, suffering from low efficiency of collecting similar features to be averaged. In order to overcome this phenomenon, we propose a NLM filter with double Gaussian anisotropic kernels as a substitute for the conventional homogeneous kernel to effectively remove noise from OCT images corrupted by speckle noise. The proposed filter was evaluated by comparing with various denoising filters ...

      Read Full Article
      Mentions: Korea University
    19. Automated choroid segmentation based on gradual intensity distance in HD-OCT images

      Automated choroid segmentation based on gradual intensity distance in HD-OCT images

      The choroid is an important structure of the eye and plays a vital role in the pathology of retinal diseases. This paper presents an automated choroid segmentation method for high-definition optical coherence tomography (HD-OCT) images, including Bruch’s membrane (BM) segmentation and choroidal-scleral interface (CSI) segmentation. An improved retinal nerve fiber layer (RNFL) complex removal algorithm is presented to segment BM by considering the structure characteristics of retinal layers. By analyzing the characteristics of CSI boundaries, we present a novel algorithm to generate a gradual intensity distance image. Then an improved 2-D graph search method with curve smooth constraints is ...

      Read Full Article
    20. Multi-functional angiographic OFDI using frequency-multiplexed dual-beam illumination

      Multi-functional angiographic OFDI using frequency-multiplexed dual-beam illumination

      Detection of blood flow inside the tissue sample can be achieved by measuring the local change of complex signal over time in angiographic optical coherence tomography (OCT). In conventional angiographic OCT, the transverse displacement of the imaging beam during the time interval between a pair of OCT signal measurements must be significantly reduced to minimize the noise due to the beam scanning-induced phase decorrelation at the expense of the imaging speed. Recent introduction of dual-beam scan method either using polarization encoding or two identical imaging systems in spectral-domain (SD) OCT scheme shows potential for high-sensitivity vasculature imaging without suffering from ...

      Read Full Article
    21. Measuring the optical characteristics of medulloblastoma with optical coherence tomography

      Measuring the optical characteristics of medulloblastoma with optical coherence tomography

      Medulloblastoma is the most common malignant pediatric brain tumor. Standard treatment consists of surgical resection, followed by radiation and high-dose chemotherapy. Despite these efforts, recurrence is common, leading to reduced patient survival. Even with successful treatment, there are often severe long-term neurologic impacts on the developing nervous system. We present two quantitative techniques that use a high-resolution optical imaging modality: optical coherence tomography (OCT) to measure refractive index, and the optical attenuation coefficient. To the best of our knowledge, this study is the first to demonstrate OCT analysis of medulloblastoma. Refractive index and optical attenuation coefficient were able to differentiate ...

      Read Full Article
    22. Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography

      Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography

      Quantification of chromophore concentrations in reflectance mode remains a major challenge for biomedical optics. Spectroscopic Optical Coherence Tomography (SOCT) provides depth-resolved spectroscopic information necessary for quantitative analysis of chromophores, like hemoglobin, but conventional SOCT analysis methods are applicable only to well-defined specular reflections, which may be absent in highly scattering biological tissue. Here, by fitting of the dynamic scattering signal spectrum in the OCT angiogram using a forward model of light propagation, we quantitatively determine hemoglobin concentrations directly. Importantly, this methodology enables mapping of both oxygen saturation and total hemoglobin concentration, or alternatively, oxyhemoglobin and deoxyhemoglobin concentration, simultaneously. Quantification was ...

      Read Full Article
    23. Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography

      Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography

      Quantitative image analysis and parameter extraction using a specific implementation of polarization-sensitive optical coherence tomography (OCT) provides differential diagnosis of mucosal pathologies in in-vivo human bladders. We introduce a cross-polarization (CP) OCT image metric called Integral Depolarization Factor (IDF) to enable automatic diagnosis of bladder conditions (assessment the functional state of collagen fibers). IDF-based diagnostic accuracy of identification of the severe fibrosis of normal bladder mucosa is 79%; recurrence of carcinoma on the post-operative scar is 97%; and differentiation between neoplasia and acute inflammation is 75%. The promising potential of CP OCT combined with image analysis in human urology is ...

      Read Full Article
    24. In vivo molecular contrast OCT imaging of methylene blue

      In vivo molecular contrast OCT imaging of methylene blue

      An 830-nm spectral-domain optical coherence tomography (OCT) system with an integrated 663-nm diode pump laser has been developed to enable molecular contrast OCT imaging of methylene blue (MB), a common vital dye used clinically. The introduction of the 663-nm diode laser, which acts as the pump in this implementation of pump-probe OCT (PPOCT), represents a minor modification to an otherwise typical OCT system. A newly developed background subtraction technique completely removes all background from intensity noise at the pump modulation frequency, simplifying the interpretation of PPOCT images. These developments have enabled the first in vivo imaging of MB with PPOCT ...

      Read Full Article
    1-24 of 1217 1 2 3 4 ... 49 50 51 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks