1. Articles in category: Developmental Biology

    1-24 of 217 1 2 3 4 5 6 7 8 9 »
    1. Optical coherence tomography for embryonic imaging: a review

      Optical coherence tomography for embryonic imaging: a review

      Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ...

      Read Full Article
    2. Retroreflective-type Janus microspheres as a novel contrast agent for enhanced optical coherence tomography

      Retroreflective-type Janus microspheres as a novel contrast agent for enhanced optical coherence tomography

      Working principle and SEM image of Janus microsphere (top). Enhanced OCT imaging (bottom) of Janus microspheres in zebrafish stomach (blue dash line) and sinusoids (green arrows) of nude liver. Optical coherence tomography (OCT) is a well-developed technology that utilizes near-infrared light to reconstruct three-dimensional images of biological tissues with micrometer resolution. Improvements of the imaging contrast of the OCT technique are able to further widen its extensive biomedical applications. In this study, Janus microspheres were developed and used as a positive contrast agent for enhanced OCT imaging. Phantom and ex vivo liver tissue experiments as well as in vivo animal ...

      Read Full Article
    3. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography

      Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography

      We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but could not be used in vivo because the embryos must be fixed and cleared. Moreover, the fixation process significantly altered the embryo morphology, which was quantified by the volume of ...

      Read Full Article
    4. Bright-Field Imaging and Optical Coherence Tomography of the Mouse Posterior Eye

      Bright-Field Imaging and Optical Coherence Tomography of the Mouse Posterior Eye

      Noninvasive live imaging has been used extensively for ocular phenotyping in mouse vision research. Bright-field imaging and optical coherence tomography (OCT) are two methods that are particularly useful for assessing the posterior mouse eye (fundus), including the retina, retinal pigment epithelium, and choroid, and are widely applied due to the commercial availability of sophisticated instruments and software. Here, we provide a guide to using these approaches with an emphasis on post-acquisition image processing using Fiji, a bundled version of the Java-based public domain software ImageJ. A bright-field fundus imaging protocol is described for acquisition of multi-frame videos, followed by image ...

      Read Full Article
    5. CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart

      CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart

      Background : CUG-BP, Elav-like family member 1 (CELF1) is a multifunctional RNA binding protein found in a variety of adult and embryonic tissues. In the heart, CELF1 is found exclusively in the myocardium. However, the roles of CELF1 during cardiac development have not been completely elucidated. Results : Myofibrillar organization is disrupted and proliferation is reduced following knockdown of CELF1 in cultured chicken primary embryonic cardiomyocytes. In vivo knockdown of Celf1 in developing Xenopus laevis embryos resulted in myofibrillar disorganization and a trend towards reduced proliferation in heart muscle, indicating conserved roles for CELF1 orthologs in embryonic cardiomyocytes. Loss of Celf1 also ...

      Read Full Article
    6. Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics

      Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics

      We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT) imaging and computational fluid dynamics (CFD) embryo-specific modeling. We focused on the heart outflow tract (OFT) region of day 3 embryos, and compared normal (control) conditions to conditions after performing an OFT banding intervention, which alters hemodynamics in the embryonic heart and vasculature. We found that hemodynamics and cardiac wall motion in the OFT are affected by banding in ways that might not be intuitive a priori . In addition to the expected increase in ventricular blood pressure, and increase blood flow ...

      Read Full Article
    7. 4D imaging of cardiac trabeculae contracting in vitro using gated OCT

      4D imaging of cardiac trabeculae contracting in vitro using gated OCT

      Cardiac trabeculae are widely used as experimental muscle preparations for studying heart muscle. However, their geometry (diameter, length, and shape) can vary not only amongst samples, but also within a sample, leading to inaccuracies in estimating their stress production, volumetric energy output, and/or oxygen consumption. Hence, it is desirable to have a system that can accurately image each trabecula in vitro during an experiment. To this end, we constructed an optical coherence tomography (OCT) system and implemented a gated imaging procedure to image actively contracting trabeculae and reconstruct their time-varying geometry. By imaging a single cross section while monitoring ...

      Read Full Article
    8. Michael Jenkins Wins American Association of Anatomists (AAA) Young Investigator Award

      Michael Jenkins Wins American Association of Anatomists (AAA) Young Investigator Award

      Ceremony at AAA's 2016 annual meeting at Experimental Biology (EB) in San Diego, CA. The ceremony is being held at The Marriot Marquis San Diego Marina on Tuesday, April 5, 2016, at 7pm. Young Investigator awards recognize investigators in the early stages of their careers who have made important contributions to biomedical science through their research in cell/molecular biology, comparative neuroanatomy, developmental biology, or the morphological sciences. The 2016 Young Investigator Award winners are:...Michael Jenkins, Ph.D. , of Case Western Reserve University , will be honored with a plaque for his early contributions to the field of developmental ...

      Read Full Article
    9. Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows

      Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows

      We present a new OCT method for flow speed quantification and directional velocimetry: particle streak velocimetry-OCT (PSV-OCT). PSV-OCT generates two-dimensional, 2.5-vector component ( v x ,| v y |, v z ) maps of microscale flow velocity fields. Knowledge of 2.5-vector components also enables the estimation of total flow speed. The enabling insight behind PSV-OCT is that tracer particles in sparsely-seeded fluid flow trace out streaks in ( x,z,t )-space. The streak orientations in x-t and z-t yield v x and v z , respectively. The in-plane ( x-z plane) residence time yields the out-of-plane speed | v y |. Vector component values are generated ...

      Read Full Article
    10. Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography

      Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography

      Four-dimensional live hemodynamic imaging of the mouse embryonic heart at embryonic day 9.0 using Doppler optical coherence tomography, showing directional blood flows in the sinus venosus, primitive atrium, atrioventricular region and vitelline vein. Hemodynamic analysis of the mouse embryonic heart is essential for understanding the functional aspects of early cardiogenesis and advancing the research in congenital heart defects. However, high-resolution imaging of cardiac hemodynamics in mammalian models remains challenging, primarily due to the dynamic nature and deep location of the embryonic heart. Here we report four-dimensional micro-scale imaging of blood flow in the early mouse embryonic heart, enabling time-resolved ...

      Read Full Article
    11. Feature of the Week 03/20/2016: Closed Loop Tracked Doppler OCT Based Heart Monitor for the Drosophila Melanogaster Larvae

      Feature of the Week 03/20/2016: Closed Loop Tracked Doppler OCT Based Heart Monitor for the Drosophila Melanogaster Larvae

      A fruit fly larva (top) was continuously tracked for continuous remote monitoring. A heartbeat trace of freely moving larva (bottom) was obtained by a low coherence interferometry based doppler sensing technique. This paper presents a novel instrument for biosciences, useful for studies of moving embryos. A dual sequential imaging/measurement channel is assembled via a closed-loop tracking architecture. The dual channel system can operate in two regimes: (i) single-point Doppler signal monitoring or (ii) fast 3-D swept source OCT imaging. The system is demonstrated for characterizing cardiac dynamics in Drosophila melanogaster larva. Closed loop tracking enables long term in vivo ...

      Read Full Article
    12. Optical coherence tomography for detection of compound action potential in Xenopus Laevis sciatic nerve

      Optical coherence tomography for detection of compound action potential in Xenopus Laevis sciatic nerve

      Due to optical coherence tomography (OCT) high spatial and temporal resolution, this technique could be used to observe the quick changes in the refractive index that accompany action potential. In this study we explore the use of time domain Optical Coherence Tomography (TD-OCT) for real time action potential detection in ex vivo Xenopus Laevis sciatic nerve. TD-OCT is the easiest and less expensive OCT technique and, if successful in detecting real time action potential, it could be used for low cost monitoring devices. A theoretical investigation into the order of magnitude of the signals detected by a TD-OCT setup is ...

      Read Full Article
    13. Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer

      Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer

      Aberrant crypt foci (ACF) are abnormal epithelial lesions that precede development of colonic polyps. As the earliest morphological change in the development of colorectal cancer, ACF is a highly studied phenomenon. The most common method of imaging ACF is chromoendoscopy using methylene blue as a contrast agent. Narrow- band imaging is a contrast-agent-free modality for imaging the colonic crypts. Optical coherence tomography (OCT) is an attractive alternative to chromoendoscopy and narrow-band imaging because it can resolve the crypt structure at sufficiently high sampling while simultaneously providing depth-resolved data. We imaged in vivo the distal 15 mm of colon in the ...

      Read Full Article
    14. Imaging of the stroke-related changes in the vascular system of the mouse brain with the use of extended focus Optical Coherence Microscopy

      Imaging of the stroke-related changes in the vascular system of the mouse brain with the use of extended focus Optical Coherence Microscopy

      We used Optical Coherence Microscopy (OCM) to monitor structural and functional changes due to ischemic stroke in small animals brains in vivo. To obtain lateral resolution of 2.2 μm over the range of 600 μm we used extended focus configuration of OCM instrument involving Bessel beam. It provided access to detailed 3D information about the changes in brain vascular system up to the level of capillaries across I and II/III layers of neocortex. We used photothrombotic stroke model involving photoactive application of rose bengal to assure minimal invasiveness of the procedure and precise localization of the clot distribution ...

      Read Full Article
    15. Measurement of strain and strain rate in embryonic chick heart using spectral domain optical coherence tomography

      Measurement of strain and strain rate in embryonic chick heart using spectral domain optical coherence tomography

      It is important to measure embryonic heart myocardial wall strain and strain rate for understanding the mechanisms of embryonic heart development. Optical coherence tomography (OCT) can provide depth resolved images with high spatial and temporal resolution, which makes it have the potential to reveal the complex myocardial activity in the early stage embryonic heart. We develop a novel method to measure strain in embryonic chick heart based on spectral domain OCT images and subsequent image processing. We perform 4D(x,y,z,t) scanning on the outflow tract (OFT) of chick embryonic hearts in HH18 stage (~3 days of incubation ...

      Read Full Article
    16. Blood flowing state analysis in outflow tract of chick embryonic heart based on spectral domain optical coherence tomography

      Blood flowing state analysis in outflow tract of chick embryonic heart based on spectral domain optical coherence tomography

      The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) and periodic stress (WPS) are the components which have been proved to influence the morphogenesis during early stages of cardiac development. The vessel wall will be deformed by the blood pressure and produce natural elastic force acting on the blood. Because blood flowing in different flow state and show different characteristics of fluid, which influence the calculation of WSS and WPS directly, it is necessary to study the blood flow state. In this paper, we introduce a method to quantify the blood flowing ...

      Read Full Article
    17. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

      Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

      A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2–5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish ...

      Read Full Article
    18. Comparison of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study

      Comparison of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study

      The mouse is a common model for studying developmental diseases. Different optical techniques have been developed to investigate mouse embryos, but each has its own set of limitations and restrictions. In this study, we imaged the same E9.5 mouse embryo with rotational imaging Optical Coherence Tomography (RI-OCT) and Selective Plane Illumination Microscopy (SPIM), and compared the two techniques. Results demonstrate that both methods can provide images with micrometer-scale spatial resolution. The RI-OCT technique was developed to increase imaging depth of OCT by performing traditional OCT imaging at multiple sides and co-registering the images. In SPIM, optical sectioning is achieved ...

      Read Full Article
    19. Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping

      Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping

      Studying embryonic mouse development is important for our understanding of normal human embryogenesis and the underlying causes of congenital defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development using optical coherence tomography (OCT). We have previously developed imaging approaches that combine static embryo culture, OCT imaging and advanced image processing to visualize the whole live mouse embryos and obtain 4D (3D+time) cardiodynamic datasets with cellular resolution. Here, we present the study of using 4D OCT for dynamic imaging of early embryonic heart in live mouse embryos to assess mutant cardiac phenotypes ...

      Read Full Article
    20. Three-dimensional imaging of the developing mouse female reproductive organs with optical coherence tomography

      Three-dimensional imaging of the developing mouse female reproductive organs with optical coherence tomography

      Infertility is a known major health concern and is estimated to impact ~15% of couples in the U.S. The majority of failed pregnancies occur before or during implantation of the fertilized embryo into the uterus. Understanding the mechanisms regulating development by studying mouse reproductive organs could significantly contribute to an improved understanding of normal development of reproductive organs and developmental causes of infertility in humans. Towards this goal, we report a three-dimensional (3D) imaging study of the developing mouse reproductive organs (ovary, oviduct, and uterus) using optical coherence tomography (OCT). In our study, OCT was used for 3D imaging ...

      Read Full Article
    21. Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo

      Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo

      Since mouse is a superior model for genetic analysis of human disorders, reproductive studies in mice have significant implications on further understanding of fertility and infertility in humans. Fertilized oocytes are transported through the reproductive tract by motile cilia lining the lumen of the oviduct as well as by oviduct contractions. While the role of cilia is well recognized, ciliary dynamics in the oviduct is not well understood, largely owing to the lack of live imaging approaches. Here, we report in vivo micro-scale mapping of cilia and cilia beat frequency (CBF) in the mouse oviduct using optical coherence tomography (OCT ...

      Read Full Article
    22. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging

      Rotational imaging optical coherence tomography for full-body mouse embryonic imaging

      Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on ...

      Read Full Article
    23. Classifying murine glomerulonephritis using optical coherence tomography and optical coherence elastography

      Classifying murine glomerulonephritis using optical coherence tomography and optical coherence elastography

      Elastic-wave propagation in mouse healthy and nephritic kidneys. Acute glomerulonephritis caused by antiglomerular basement membrane marked by high mortality. The primary reason for this is delayed diagnosis via blood examination, urine analysis, tissue biopsy, or ultrasound and X-ray computed tomography imaging. Blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution, with reduced sensitivity. Optical coherence tomography is a noninvasive and high-resolution imaging technique that provides superior spatial resolution (micrometer scale) as compared to ultrasound and CT. Changes in tissue properties can be detected based on the optical metrics analyzed from ...

      Read Full Article
    24. University of Houston Receives NIH Grant for Optical Coherence Tomography to Study Effect of Poly-Drug Exposure of Fetal Brain Development

      University of Houston Receives NIH Grant for Optical Coherence Tomography to Study Effect of Poly-Drug Exposure of Fetal Brain Development

      University of Houston Receives a 2016 NIH Grant for $424,849 for Optical Coherence Tomography to Study Effect of Poly-Drug Exposure of Fetal Brain Development. The principal investigator is Kirill Larin. The program began in 2016 and ends in 2020. Below is a summary of the proposed work. The overall objective of this study is to develop an optical coherence tomography (OCT) based high- resolution mouse embryonic brain imaging and analysis approach, and to use this method in correlation with molecular analysis to understand the interplay between ethanol (EtOH) and nicotine (NIC) effects on embryonic brain development. Maternal exposures to ...

      Read Full Article
    1-24 of 217 1 2 3 4 5 6 7 8 9 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Popular Articles

  3. Organizations in the News

    1. (2 articles) University of Houston
    2. (2 articles) Baylor College of Medicine
    3. (1 articles) Chinese Academy of Sciences
    4. (1 articles) Case Western Reserve University
  4. People in the News

    1. (2 articles) Mary E. Dickinson
    2. (2 articles) Manmohan Singh
    3. (2 articles) Kirill V. Larin
    4. (1 articles) Anjul M. Davis
    5. (1 articles) Chen Wu
    6. (1 articles) Alex E. Cable
    7. (1 articles) Irina V. Larina
  5. OCT Companies in the News

    1. (1 articles) Thorlabs