1. Articles in category: Pulmonology

    169-192 of 234 « 1 2 3 4 5 6 7 8 9 10 »
    1. Bronchoscopic Advances: On the Way to the Cells

      Bronchoscopic Advances: On the Way to the Cells
      In the past 15 years, new endoscopic methods have been developed in order to improve the detection of early bronchial cancers, with autofluorescence bronchoscopy being the leading technique. However, autofluorescence bronchoscopy is hampered by the low specificity of the fluorescence defect which ranges from 25 to 50%, and its limitation to the proximal bronchial tree from which arise only half of the lung cancers that are currently diagnosed. To overcome these limitations, other techniques emerge including video/autofluorescence bronchoscopy, narrow band imaging, optical coherence tomography, and ‘endomicroscopy’ using confocal fluorescent laser microscopy. These emerging techniques provide new insight into bronchology ...
      Read Full Article
    2. Tomophase Receives Seventh Patent: Delivering Light via Optical Waveguide and Multiview Optical Probe Head

      Tomophase Receives Seventh Patent: Delivering Light via Optical Waveguide and Multiview Optical Probe Head
      BURLINGTON, Mass.--(BUSINESS WIRE)--Tomophase Corporation, a leading developer of non-invasive optical coherence tomography (OCT) tissue imaging devices, announced today that it has received notification of the issuance of its seventh patent: Delivering Light via Optical Waveguide and Multi-view Opt
      Read Full Article
    3. Outcome of Photodynamic Therapy Using NPe6 for Bronchogenic Carcinomas in Central Airways >1.0 cm in Diameter

      Outcome of Photodynamic Therapy Using NPe6 for Bronchogenic Carcinomas in Central Airways >1.0 cm in Diameter
      Purpose: Most centrally located early lung cancers (CLELC) <1.0 cm in diameter do not invade beyond the bronchial cartilage, and photodynamic therapy (PDT) with Photofrin is currently recommended as a treatment option for such lesions. NPe6 is a second-generation photosensitizer, and because it has a longer absorption band (664 nm) than Photofrin (630 nm), we hypothesized that NPe6-PDT would exert a strong antitumor effect against cancer lesions >1.0 cm in diameter, which are assumed to involve extracartilaginous invasion and to be unsuitable for treatment with Photofrin-PDT. Experimental Design: Between June 2004 and December 2008, 75 patients (91 lesions) with CLELC underwent NPe6-PDT after the extent of their tumors had been assessed by fluorescence bronchoscopy for photodynamic diagnosis and tumor depth had been assessed by optical coherence tomography. Results: Seventy cancer lesions ≤1.0 cm in diameter and 21 lesions >1.0 cm in diameter were identified, and the complete response rate was 94.0% (66 of 70) and ...
      Read Full Article
    4. Tomophase Corporation Names Ralph S. Johnston President and Chief Operating Officer

      Tomophase Corporation Names Ralph S. Johnston President and Chief Operating Officer
      BURLINGTON, Mass.--(HSMN NewsFeed)--Tomophase Corporation, a leading developer of non-invasive optical coherence tomography (OCT) tissue imaging devices, announced today that Ralph S. Johnston has been appointed President and Chief Operating Officer of the company. The announcement was made by Dr. Peter Norris, CEO, Co-Founder and Chairman of the Board. Mr. Johnston brings over 25 years of experience in medical devices and pharmaceuticals to the business. He has held senior management positions in business development, strategic marketing and sales with venture-backed start-up enterprises and Fortune 500 companies Pfizer and Corning Medical.
      Read Full Article
    5. Early Diagnosis of Lung Cancer

      Early Diagnosis of Lung Cancer
      Early detection and surgical resection is essential for the treatment of lung cancer. Although the introduction of low-dose spiral computed tomography (CT) is considered to be one of the most promising clinical research developments, CT screening is used for detecting small peripheral lesions. Tumors arising in the central airways require other techniques for early detection. Centrally arising squamous cell carcinoma of the airway, especially in heavy smokers, is thought to develop through multiple stages from squamous metaplasia to dysplasia, followed by carcinoma in situ (CIS), progressing to invasive cancer. It would be ideal to be able to detect and treat ...
      Read Full Article
    6. Three-dimensional Fourier domain optical coherence tomography in vivo imaging of alveolar tissue in the intact thorax using the parietal pleura as a window

      Three-dimensional Fourier domain optical coherence tomography in vivo imaging of alveolar tissue in the intact thorax using the parietal pleura as a window
      In vivo determination of 3-D and dynamic geometries of alveolar structures with adequate resolution is essential for developing numerical models of the lung. A thorax window is prepared in anesthetized rabbits by removal of muscle tissue between the third and fourth rib without harming the parietal pleura. The transparent parietal pleura allows contact-free imaging by intravital microscopy IVM and 3-D optical coherence tomography 3-D OCT. We demonstrate that dislocation of the lung surface is small enough to observe identical regions in the expiratory and inspiratory plateau phase, and that OCT in this animal model is suitable for generating 3-D geometry ...
      Read Full Article
    7. Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography

      Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography

      Background Previous histological and imaging studies have shown the presence of variability in the degree of bronchoconstriction of airways sampled at different locations in the lung (i.e., heterogeneity). Heterogeneity can occur at different airway generations and at branching points in the bronchial tree. Whilst heterogeneity has been detected by previous experimental approaches its spatial relationship either within or between airways is unknown. Methods In this study, distribution of airway narrowing responses across a portion of the porcine bronchial tree was determined in vitro. The portion comprised contiguous airways spanning bronchial generations (#3-11), including the associated side branches. We used ...

      Read Full Article
    8. Optical coherence tomography imaging of preneoplastic lung lesion

      Although autofluorescence bronchoscopy improves the detection rate of high grade dysplasia and carcinoma in-situ compares to white-light examination, the natural history of preneoplastic bronchial lesions is still poorly understood because the biopsy procedure for histological confirmation can mechanically remove these small lesions. The lack of accurate information regarding the spontaneous progression and regression rates of preneoplastic lesions make if difficult to assess the effect of chemoprevention agents. It is therefore important to develop non-biopsy methods that can characterize preneoplastic lesions in the bronchial epithelium. Optical coherence tomography (OCT) is an optical imaging method that can visualize cellular and extra-cellular structures ...

      Read Full Article
    9. In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance

      The purpose of this study was to develop a dynamic tunable focal distance graded-refractive-index lens rod-based high-speed 3-D swept-source (SS) optical coherence tomography (OCT) endoscopic system and demonstrate real-time in vivo, high-resolution (10-µm) imaging of pleural-based malignancies in an animal model. The GRIN lens-based 3-D SS OCT system, which images at 39 fps with 512 A-lines per frame, was able to capture images of and detect abnormalities during thoracoscopy in the thoracic cavity, including the pleura, chest wall, pericardium, and the lungs. The abnormalities were confirmed by histological evaluation and compared to OCT findings. The dynamic tunable focal distance range ...
      Read Full Article
    10. Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures

      Three-dimensional Fourier domain optical coherence tomography (3-D FDOCT) is used to demonstrate that perfusion fixation with a mixture of glutaraldehyde and paraformaldehyde does not alter the geometry of subpleural lung parenchyma in isolated and perfused rabbit lungs. This is confirmed by simultaneous imaging of lung parenchyma with intravital microscopy. To eliminate the diffraction index interfaces between alveolar pockets and walls, we fill the fixed lungs with ethanol by perfusing with gradually increasing concentrations. This bottom-up filling process leaves no remaining air bubbles in the alveolar structures, thus drastically improving the resolution and penetration depth of 3-D FDOCT imaging. We observe ...
      Read Full Article
    11. Optical Coherence Tomography: An Adjunct to Flexible Bronchoscopy in the Diagnosis of Lung Cancer

      Optical coherence tomography will be a feasible adjunct to flexible bronchoscopy, and provide images with good sensitivity and specificity to determine the presence of endobronchial malignancies. OCT could become a powerful tool in diagnostic pulmonary medicine, not only in the early recognition of lung cancer, but also in the evaluation and monitoring of microstructures in the lower respiratory tract that are affected by other inflammatory or invasive disease processes. Initially, OCT could be used to guide the location of biopsies which would likely provide increased specificity to traditional bronchoscopy. However, if the sensitivity and specificity of OCT images are comparable ...
      Read Full Article
      Mentions: FDA
    12. In vivo early detection of smoke-induced airway injury using three-dimensional swept-source optical coherence tomography

      In vivo early detection of smoke-induced airway injury using three-dimensional swept-source optical coherence tomography
      We report on the feasibility of rapid, high-resolution, 3-D swept-source optical coherence tomography (SSOCT) to detect early airway injury changes following smoke inhalation exposure in a rabbit model. The SSOCT system obtains 3-D helical scanning using a microelectromechanical system motor-based endoscope. Real-time 2-D data processing and image display at the speed of 20 frames/s are achieved by adopting the technique of parallel computing. Longitudinal images are reconstructed via an image processing algorithm to remove motion artifacts caused by ventilation and pulse. Quantitative analyses of tracheal airway thickness as well as thickness distribution along tracheal circumference are also performed based ...
      Read Full Article
    13. Gaining a better picture of lung disease

      Chronic obstructive pulmonary disease (COPD), a respiratory disease commonly known as chronic bronchitis or emphysema, is the fourth leading cause of death worldwide, but a University of Western Ontario researcher is providing new insight into the disease. With 600 million people living with COPD, researchers have yet to find any real treatment or cure. However, Grace Parraga of Robarts Research Institute is using various imaging techniques to learn more about the diease. The World Health Organization officially recognized World COPD Day on Wednesday. Parraga is a scientist in the Imaging Research Laboratories at Robarts and recently recruited to the Departments ...
      Read Full Article
    14. Multimodality bronchoscopic imaging of recurrent respiratory papillomatosis

      Objectives/Hypothesis. Recurrent respiratory papillomatosis (RRP) of the central airways requires removal to potentially reduce recurrence and risk for malignant transformation. Analogous to the principles of treatment for early lung cancer, a precise determination of the extent of cartilage invasion could help guide therapeutic decisions and monitor response to treatment. The purpose of this study was to determine whether a bronchoscopy platform comprised of white light bronchoscopy (WLB), endobronchial ultrasound (EBUS), and optical coherence tomography (OCT) could identify layered microstructure of RRP and underlying cartilage. Study Design. Case study. Methods. A bronchoscopy platform consisting of commercially available WLB, EBUS using ...
      Read Full Article
    15. Airway Narrowing Assessed by Anatomical Optical Coherence Tomography In Vitro: Dynamic Airway Wall Morphology and Function

      Airway Narrowing Assessed by Anatomical Optical Coherence Tomography In Vitro: Dynamic Airway Wall Morphology and Function

      Regulation of airway caliber by lung volume or bronchoconstrictor stimulation is dependent on physiological, structural and mechanical events within the airway wall, including airway smooth muscle (ASM) contraction, deformation of the mucosa and cartilage, and tensioning of elastic matrices linking wall components. Despite close association between events in the airway wall and the resulting airway caliber these have typically been studied separately: the former primarily using histological approaches, the latter with a range of imaging modalities. We describe a new optical technique, anatomical optical coherence tomography (aOCT), which allows changes at the luminal surface (airway caliber) to be temporally related ...

      Read Full Article
    16. Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs

      There is a growing interest in analyzing lung mechanics at the level of the alveoli in order to understand stress-related pathogenesis and possibly avoid ventilator associated lung injury. Emerging quantitative models to simulate fluid mechanics and the associated stresses and strains on delicate alveolar walls require realistic quantitative input on alveolar geometry and its dynamics during ventilation. Here, three-dimensional optical coherence tomography (OCT) and conventional intravital microscopy are joined in one setup to investigate the geometric changes of subpleural alveoli during stepwise pressure increase and release in an isolated and perfused rabbit lung model. We describe good qualitative agreement and ...
      Read Full Article
    17. Comparison of two in vivo microscopy techniques to visualize alveolar mechanics

      Objective In conventional in vivo microscopy, a three dimensional illustration of tissue is lacking. Concerning the microscopic analysis of the pulmonary alveolar network, surgical preparation of the thorax and fixation of the lung is required to place the microscope’s objective. These effects may have influence on the mechanical behaviour of alveoli. Relatively new methods exist for in vivo microscopy being less invasive and enabling an observation without fixation of the lung. The aim of this study was to compare a fibered confocal laser scanning microscopy (FCLSM) with optical coherence tomography (OCT) in a mouse and a rabbit model. Moreover ...
      Read Full Article
    18. Developmental Aspects of the Upper Airway

      The upper airway serves three important functions: respiration, swallowing, and speech. During development it undergoes significant structural and functional changes that affect its size, shape, and mechanical properties. Abnormalities of the upper airway require prompt attention, because these often alter ventilatory patterns and gas exchange, particularly during sleep when upper airway motor tone and ventilatory drive are diminished. Recognizing the relationship of early life events to lung health and disease, the National Heart, Lung, and Blood Institute (NHLBI), with cofunding from the Office of Rare Diseases (ORD), convened a workshop of extramural experts, from many disciplines. The objective of the ...
      Read Full Article
    19. Detection and monitoring of early airway injury effects of half-mustard (2-chloroethylethylsulfide) exposure using high-resolution optical coherence tomography

      Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging technology capable of delivering real-time, near-histologic images of tissues. Mustard gas is a vesicant-blistering agent that can cause severe and lethal damage to airway and lungs. The ability to detect and assess airway injury in the clinical setting of mustard exposure is currently limited. The purpose of this study is to assess the ability to detect and monitor progression of half-mustard [2-chloroethylethylsulfide (CEES)] airway injuries with OCT techniques. A ventilated rabbit mustard exposure airway injury model is developed. A flexible fiber optic OCT probe is introduced into the distal trachea to ...
      Read Full Article
    20. Proceedings of the American Thoracic Society: Chair's Summary

      Proceedings of the American Thoracic Society: Chair's Summary
      Many imaging modalities can be used for visualization of target molecular signatures in the lungs, yet no single modality offers a winning combination of maximal spatial resolution, specificity, selectivity, sensitivity, signal penetration (see articles by Kauczor and colleagues, Emami and colleagues, Divgi, and Coxson and Lam, pages 439–443, this issue). Selection of the best modality is further complicated by practical issues of affordability, safety, and availability (e.g., generator versus cyclotron-produced radioisotopes). For example, the excellent structural resolution afforded by MRI (22) is inferior in its sensitivity to other modalities, like PET and SPECT for molecular imaging. The difficulties ...
      Read Full Article
    21. Quantitative Assessment of the Airway Wall Using Computed Tomography and Optical Coherence Tomography

      Ever since the site and nature of airflow obstruction in chronic obstructive pulmonary disease was described by Hogg, Thurlbeck, and Macklem, investigators have been looking for methods to noninvasively measure the airway wall dimensions. Recent advances in computed tomography technology and new computer algorithms have made it possible to visualize and measure the airway wall and lumen without the need for tissue. However, while there is great hope for computed tomographic assessment of airways, it is well known that the spatial resolution does not allow small airways to be visualized and there are still concerns about the sensitivity of these ...

      Read Full Article
    22. Alveolar dynamics in acute lung injury: Heterogeneous distension rather than cyclic opening and collapse *

      Objectives: To analyze alveolar dynamics in healthy and acid-injured lungs of ventilated mice. Protective ventilation is potentially lifesaving in patients with acute lung injury. However, optimization of ventilation strategies is hampered by an incomplete understanding of the effects of mechanical ventilation at the alveolar level. Design: In anesthetized and ventilated Balb/c mice, subpleural alveoli were visualized by darkfield intravital microscopy and optical coherence tomography. Setting: Animal research laboratory. Subjects: Male Balb/c mice. Interventions: Lung injury was induced by intratracheal instillation of hydrochloric acid. In control animals and mice with lung injury, ventilation pressures were varied between 0 and ...
      Read Full Article
    23. Three-dimensional measurement of alveolar airspace volumes in normal and emphysematous lungs using micro-CT

      In pulmonary emphysema, the alveolar structure progressively breaks down via a three-dimensional (3D) process that leads to airspace enlargement. The characterization of such structural changes has, however, been based on measurements from two-dimensional (2D) tissue sections or estimates of 3D structure from 2D measurements. In this study, we developed a novel silver staining method for visualizing tissue structure in 3D using micro-computed tomographic (CT) imaging, which showed that at 30 cmH20 fixing pressure, the mean alveolar airspace volume increased from 0.12 nl in normal mice to 0.44 nl and 2.14 nl in emphysematous mice, respectively, at 7 ...
      Read Full Article
    169-192 of 234 « 1 2 3 4 5 6 7 8 9 10 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Popular Articles

  3. Organizations in the News

    1. (2 articles) National Institutes of Health
    2. (1 articles) Harvard University
    3. (1 articles) Massachusetts General Hospital
  4. People in the News

    1. (1 articles) Lida P. Hariri
    2. (1 articles) Melissa J. Suter
    3. (1 articles) Brett E. Bouma