1. Articles from Laurin Ginner

    1-15 of 15
    1. Ex-vivo Alzheimer’s disease brain tissue investigation: a multiscale approach using 1060-nm swept source optical coherence tomography for a direct correlation to histology

      Ex-vivo Alzheimer’s disease brain tissue investigation: a multiscale approach using 1060-nm swept source optical coherence tomography for a direct correlation to histology

      Significance: Amyloid-beta (A-β) plaques are pathological protein deposits formed in the brain of Alzheimer’s disease (AD) patients upon disease progression. Further research is needed to elucidate the complex underlying mechanisms involved in their formation using label-free, tissue preserving, and volumetric techniques. Aim: The aim is to achieve a one-to-one correlation of optical coherence tomography (OCT) data to histological micrographs of brain tissue using 1060-nm swept source OCT. Approach: A-β plaques were investigated in ex-vivo AD brain tissue using OCT with the capability of switching between two magnifications. For the exact correlation to histology, a 3D-printed tool was designed to ...

      Read Full Article
    2. Changes in Retinal Blood Flow in Response to an Experimental Increase in IOP in Healthy Participants as Assessed With Doppler Optical Coherence Tomography

      Changes in Retinal Blood Flow in Response to an Experimental Increase in IOP in Healthy Participants as Assessed With Doppler Optical Coherence Tomography

      Purpose : Blood flow autoregulation is an intrinsic mechanism of the healthy retinal vasculature to keep blood flow constant when ocular perfusion pressure (OPP) is changed. In the present study, we set out to investigate retinal blood flow in response to an experimental decrease in OPP in healthy participants using Doppler optical coherence tomography. Methods : Fifteen healthy participants aged between 22 and 31 years (mean, 27 ± 3 years) were included in the present open study. IOP was increased stepwise via the suction cup method to induce a decrease in OPP. Retinal blood flow in arteries and veins was assessed using a ...

      Read Full Article
    3. Comparison of optical coherence tomography angiography and narrow-band imaging using a bimodal endoscope

      Comparison of optical coherence tomography angiography and narrow-band imaging using a bimodal endoscope

      We present coregistered images of tissue vasculature that allow a direct comparison between the performance of narrow-band imaging (NBI) and optical coherence tomography angiography (OCTA). Images were generated with a bimodal endomicroscope having a size of 15  ×  2.4  ×  3.3  mm 3   (   l   ,   w   ,   h   )   that combines two imaging channels. The white light imaging channel was used to perform NBI, the current gold standard for endoscopic visualization of vessels. The second channel allowed the simultaneous acquisition of optical coherence tomography (OCT) and OCTA images, enabling a three-dimensional (3-D) visualization of morphological as well as functional tissue information. In order ...

      Read Full Article
    4. Synthetic subaperture-based angle-independent Doppler flow measurements using single-beam line field optical coherence tomography in vivo

      Synthetic subaperture-based angle-independent Doppler flow measurements using single-beam line field optical coherence tomography in vivo

      We demonstrate a synthetic subaperture-based angle-independent Doppler flow calculation, using a line field spectral domain optical coherence tomography system. The high speed of the system features a high phase stability over the volume, which is necessary to apply synthetic subapertures in the aperture plane. Thus, the flow component for each subaperture can be reconstructed in postprocessing. Capillary phantom and in vivo retinal imaging experiments were performed to validate and demonstrate angle-independent Doppler flow calculation

      Read Full Article
    5. Numerically focused full-field swept-source optical coherence microscopy with structured illumination

      Numerically focused full-field swept-source optical coherence microscopy with structured illumination

      This paper presents an experimental investigation of the possibility of transverse resolution improvement combined with effective numerically focused 3D imaging in full-field swept-source optical coherence microscopy (OCM) by using structured illumination and specific numerical post-processing. The possibility of transverse resolution improvement of the OCM coherence signal combined with the possibility of numerical focusing is demonstrated by imaging a resolution test target in the optical focus and defocus regions. The possibility of numerically focused 3D imaging with high transverse resolution is further demonstrated by imaging a 3D phantom and a biological sample. The results obtained demonstrate the feasibility and prospects of ...

      Read Full Article
    6. Feature Of The Week 07/01/2018: Endoscopic Optical Coherence Tomography with a Flexible Fiber Bundle

      Feature Of The Week 07/01/2018: Endoscopic Optical Coherence Tomography with a Flexible Fiber Bundle

      We demonstrate in vivo endoscopic optical coherence tomography (OCT) imaging in the forward direction using a flexible fiber bundle (FB). In comparison to current conventional forward-looking probe schemes, our approach simplifies the endoscope design by avoiding the integration of any beam steering components in the distal probe end due to two-dimensional scanning of a focused light beam over the proximal FB surface. We describe the challenges that arise when OCT imaging with an FB is performed, such as multimoding or cross coupling. The performance of different FBs varying in parameters, such as numerical aperture, core size, core structure, and flexibility ...

      Read Full Article
    7. Endoscopic optical coherence tomography with a flexible fiber bundle

      Endoscopic optical coherence tomography with a flexible fiber bundle

      We demonstrate in vivo endoscopic optical coherence tomography (OCT) imaging in the forward direction using a flexible fiber bundle (FB). In comparison to current conventional forward-looking probe schemes, our approach simplifies the endoscope design by avoiding the integration of any beam steering components in the distal probe end due to two-dimensional scanning of a focused light beam over the proximal FB surface. We describe the challenges that arise when OCT imaging with an FB is performed, such as multimoding or cross coupling. The performance of different FBs varying in parameters, such as numerical aperture, core size, core structure, and flexibility ...

      Read Full Article
    8. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye

      Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye

      Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive ...

      Read Full Article
    9. Endoscopic optical coherence tomography with a flexible fiber bundle

      Endoscopic optical coherence tomography with a flexible fiber bundle

      We demonstrate in vivo endoscopic optical coherence tomography (OCT) imaging in the forward direction using a flexible fiber bundle. In comparison to current conventional forward looking probe schemes, our approach simplifies the endoscope design by avoiding the integration of any beam steering components in the distal probe end due to 2D scanning of a focused light beam over the proximal fiber bundle surface. We describe the challenges that arise when OCT imaging with a fiber bundle is performed, such as multimoding or cross-coupling. The performance of different fiber bundles with varying parameters such as numerical aperture, core size and core ...

      Read Full Article
    10. Holographic line field en-face OCT with digital adaptive optics in the retina in vivo

      Holographic line field en-face OCT with digital adaptive optics in the retina in vivo

      We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and ...

      Read Full Article
    11. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo

      Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo

      High-resolution imaging of the human retina has always been a challenge due to imperfect optical properties of the human cornea and lens, which limit the achievable resolution. We present a noniterative digital aberration correction (DAC) to achieve aberration-free cellular-level resolution in optical coherence tomography (OCT) images of the human retina in vivo . The system used is a line-field spectral-domain OCT system with a high tomogram rate, reaching 2.5 kHz. Such a high speed enables us to successfully apply digital aberration correction for not only imaging of human cone photoreceptors but also to obtain an aberration- and defocus-corrected 3D volume ...

      Read Full Article
    12. Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics

      Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics

      The purpose of this work is to investigate the benefits of adaptive optics (AO) technology for optical coherence tomography angiography (OCTA). OCTA has shown great potential in non-invasively enhancing the contrast of vessels and small capillaries. Especially the capability of the technique to visualize capillaries with a lateral extension that is below the transverse resolution of the system opens unique opportunities in diagnosing retinal vascular diseases. However, there are some limitations of this technology such as shadowing and projection artifacts caused by overlying vasculature or the inability to determine the true extension of a vessel. Thus, the evaluation of the ...

      Read Full Article
    13. Comprehensive vascular imaging using optical coherence tomography-based angiography and photoacoustic tomography

      Comprehensive vascular imaging using optical coherence tomography-based angiography and photoacoustic tomography

      Studies have proven the relationship between cutaneous vasculature abnormalities and dermatological disorders, but to image vasculature noninvasively in vivo , advanced optical imaging techniques are required. In this study, we imaged a palm of a healthy volunteer and three subjects with cutaneous abnormalities with photoacoustic tomography (PAT) and optical coherence tomography with angiography extension (OCTA). Capillaries in the papillary dermis that are too small to be discerned with PAT are visualized with OCTA. From our results, we speculate that the PA signal from the palm is mostly from hemoglobin in capillaries rather than melanin, knowing that melanin concentration in volar skin ...

      Read Full Article
    14. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging

      Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging

      Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive ...

      Read Full Article
    15. Wide-Field OCT Angiography at 400 kHz Utilizing Spectral Splitting

      Wide-Field OCT Angiography at 400 kHz Utilizing Spectral Splitting

      Optical angiography systems based on optical coherence tomography (OCT) require dense sampling in order to maintain good vascular contrast. We demonstrate a way to gain acquisition speed and spatial sampling by using spectral splitting with a swept source OCT system. This method splits the recorded spectra into two to several subspectra. Using continuous lateral scanning, the lateral sampling is then increased by the same factor. This allows increasing the field of view of OCT angiography, while keeping the same transverse resolution and measurement time. The performance of our method is demonstrated in vivo at different locations of the human retina ...

      Read Full Article
    1-15 of 15
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (15 articles) Medical University of Vienna
    2. (3 articles) Insight Photonic Solutions
    3. (2 articles) University College London
    4. (1 articles) Singapore Eye Research Institute
    5. (1 articles) Nanyang Technological University
    6. (1 articles) Imagine Eyes
    7. (1 articles) Carl Zeiss Meditec
  3. Popular Articles

  4. Picture Gallery

    Wide-Field OCT Angiography at 400 kHz Utilizing Spectral Splitting Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging Comprehensive vascular imaging using optical coherence tomography-based angiography and photoacoustic tomography Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo Holographic line field en-face OCT with digital adaptive optics in the retina in vivo Endoscopic optical coherence tomography with a flexible fiber bundle Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye Endoscopic optical coherence tomography with a flexible fiber bundle Feature Of The Week 07/01/2018: Endoscopic Optical Coherence Tomography with a Flexible Fiber Bundle The truth about invisible posterior vitreous structures Increased Macrophage-like Cell Density in Retinal Vein Occlusion as Characterized by en Face Optical Coherence Tomography