1. Articles from Wolfgang Draxinger

    1-15 of 15
    1. Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology

      Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology

      The discrimination of tumor-infiltrated tissue from non-tumorous brain tissue during neurosurgical tumor excision is a major challenge in neurosurgery. It is critical to achieve full tumor removal since it directly correlates with the survival rate of the patient. Optical coherence tomography (OCT) might be an additional imaging method in the field of neurosurgery that enables the classification of different levels of tumor infiltration and non-tumorous tissue. This work investigated two OCT systems with different imaging wavelengths (930 nm/1310 nm) and different resolutions (axial (air): 4.9 μm/16 μm, lateral: 5.2 μm/22 μm) in their ability to ...

      Read Full Article
    2. Towards phase-stabilized Fourier domain mode-locked frequency combs

      Towards phase-stabilized Fourier domain mode-locked frequency combs

      Fourier domain mode-locked (FDML) lasers are some of the fastest wavelength-swept light sources, and used in many applications like optical coherence tomography (OCT), OCT endoscopy, Raman microscopy, light detection and ranging, and two-photon microscopy. For a deeper understanding of the underlying laser physics, it is crucial to investigate the light field evolution of the FDML laser and to clarify whether the FDML laser provides a frequency comb structure. In this case, the FDML would output a coherent sweep in frequency with a stable phase relation between output colours. To get access to the phase of the light field, a beat ...

      Read Full Article
    3. Registration of histological brain images onto optical coherence tomography images based on shape information

      Registration of histological brain images onto optical coherence tomography images based on shape information

      Identifying tumour infiltration zones during tumour resection in order to excise as much tumour tissue as possible without damaging healthy brain tissue is still a major challenge in neurosurgery. The detection of tumour infiltrated regions so far requires histological analysis of biopsies taken from at expected tumour boundaries. The gold standard for histological analysis is the staining of thin cut specimen and the evaluation by a neuropathologist. This work presents a way to transfer the histological evaluation of a neuropathologist onto optical coherence tomography (OCT) images. OCT is a method suitable for real time in vivo imaging during neurosurgery however ...

      Read Full Article
    4. Method for monitoring time-dependent properties of light during scanning swept-source optical coherence tomography

      Method for monitoring time-dependent properties of light during scanning swept-source optical coherence tomography

      A method comprises: splitting laser light into sample light, reference light, and monitor light; routing the reference light into a reference arm of an OCT interferometer; routing the monitor light into a monitor device, which generates at least one optical monitor signal representing at least one time-dependent property of the monitor light; generating at least one electric monitor signal from the at least one optical monitor signal; illuminating in a point-shaped manner a sample with sample light, wherein the illumination point is guided on the surface of the sample along a predetermined trajectory; superimposing the light scattered by the sample ...

      Read Full Article
      Mentions: Optores
    5. Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence

      Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence

      We present continuous three-dimensional spectral zooming in live 4D-OCT using a home-built FDML based OCT system with 3.28 MHz A-scan rate. Improved coherence characteristics of the FDML laser allow for imaging ranges up to 10 cm. For the axial spectral zoom feature, we switch between high resolution and long imaging range by adjusting the sweep range of our laser. We present a new imaging setup allowing for synchronized adjustments of the imaging range and lateral field of view during live OCT imaging. For this, a novel inline recalibration algorithm was implemented that enables numerical k-linearization of the raw OCT ...

      Read Full Article
    6. Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision

      Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision

      In highly dispersion compensated Fourier domain mode locked (FDML) lasers, an ultra-low noise operation can only be achieved by extremely precise and stable matching of the filter tuning period and light circulation time in the cavity. We present a robust and high precision closed-loop control algorithm and an actively cavity length controlled FDML laser. The cavity length control achieves a stability of ∼0.18 mHz at a sweep repetition rate of ∼418 kHz which corresponds to a ratio of 4×10 −10 . Furthermore, we prove that the rapid change of the cavity length has no negative impact on the quality ...

      Read Full Article
    7. Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging

      Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging

      In order to realize adjustable A-scan rates of fast optical coherence tomography (OCT) systems, we investigate averaging of OCT image data acquired with a MHz-OCT system based on a Fourier Domain Mode Locked (FDML) laser. Increased system sensitivity and image quality can be achieved with the same system at the cost of lower imaging speed. Effectively, the A-scan rate can be reduced in software by a freely selectable factor. We demonstrate a detailed technical layout of the strategies necessary to achieve efficient coherent averaging. Since there are many new challenges specific to coherent averaging in swept source MHz-OCT, we analyze ...

      Read Full Article
    8. High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography

      High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography

      We present a forward-viewing fiber scanning endoscope (FSE) for high-speed volumetric optical coherence tomography (OCT). The reduction in size of the probe was achieved by substituting the focusing optics by an all-fiber-based imaging system which consists of a combination of scanning single-mode fibers, a glass spacer, made from a step-index multi-mode fiber, and a gradient-index fiber. A lateral resolution of 11 μm was achieved at a working distance of 1.2 mm. The newly designed piezo-based FSE has an outer diameter of 1.6 mm and a rigid length of 13.5 mm. By moving the whole imaging optic in ...

      Read Full Article
    9. Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography

      Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography

      We investigate the origin of high frequency noise in Fourier domain mode locked (FDML) lasers and present an extremely well dispersion compensated setup which virtually eliminates intensity noise and dramatically improves coherence properties. We show optical coherence tomography (OCT) imaging at 3.2 MHz A-scan rate and demonstrate the positive impact of the described improvements on the image quality. Especially in highly scattering samples, at specular reflections and for strong signals at large depth, the noise in optical coherence tomography images is significantly reduced. We also describe a simple model that suggests a passive physical stabilizing mechanism that leads to ...

      Read Full Article
    10. Feature Of The Week 09/10/2017: Thermo-elastic Optical Coherence Tomography

      Feature Of The Week 09/10/2017: Thermo-elastic  Optical Coherence Tomography

      The conventional OCT image contrast is derived from elastic scattering, and shows the internal structure of the sample. The determination of the tissue type in OCT images usually depends on the interpretation by the image reader. More accurate tissue type contrast may be achieved by new OCT-based imaging modalities, with sensitivity to other physical parameters than scattering alone. Phase-sensitive OCT can detect tissue motion on nanometer-to- micrometer length scales using the phase of the OCT signal. Depending on the nature of the excitation, different functional images can be reconstructed: a mechanical stimulus yields images of tissue elasticity (optical coherence elastography ...

      Read Full Article
    11. Thermo-elastic optical coherence tomography

      Thermo-elastic optical coherence tomography

      The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

      Read Full Article
    12. Analysis of FDML lasers with meter range coherence

      Analysis of FDML lasers with meter range coherence

      FDML lasers provide sweep rates in the MHz range at wide optical bandwidths, making them ideal sources for high speed OCT. Recently, at lower speed, ultralong-range swept-source OCT has been demonstrated using a tunable vertical cavity surface emitting laser (VCSEL) and also using a Vernier-tunable laser. These sources provide relatively high sweep rates and meter range coherence lengths. In order to achieve similar coherence, we developed an extremely well dispersion compensated Fourier Domain Mode Locked (FDML) laser, running at 3.2 MHz sweep rate and 120 nm spectral bandwidth. We demonstrate that this laser offers meter range coherence and enables ...

      Read Full Article
    13. Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm

      Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm

      Purpose : To demonstrate ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s for choroidal imaging in normal and diseased eyes over a ∼60° field of view. To investigate and correlate wide-field three-dimensional (3D) choroidal thickness (ChT) and vascular patterns using ChT maps and coregistered high-definition en face images extracted from a single densely sampled Megahertz-OCT (MHz-OCT) dataset. Methods : High-definition, ∼60° wide-field 3D datasets consisting of 2088 × 1024 A-scans were acquired using a 1.68 MHz prototype SS-OCT system at 1050 nm based on a Fourier-domain mode-locked laser. Nine subjects (nine eyes) with various chorioretinal diseases or without ...

      Read Full Article
    14. A 4-D OCT Engine with 1 GVoxel/s

      A 4-D OCT Engine with 1 GVoxel/s

      Optical coherence tomography (OCT) is a depth-resolved imaging modality that provides micrometer-scale cross-sectional and 3-D information on the scattering properties of biological samples. 1 Video rate real-time 3-D volumetric OCT (4-D-OCT) could generate a new class of optical tools in clinical practice, like surgical guidance. 2 This challenge requires us to combine a high-speed OCT imaging setup, ultrafast data acquisition and adequate real-time data processing to process and visualize the vast amount of data. Although 4-D-OCT has long been a dream for researchers, only a few groups have successfully implemented 4-D volumetric OCT imaging with real-time visualization—usually with low ...

      Read Full Article
    15. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s

      High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s

      We present a 1300 nm OCT system for volumetric real-time live OCT acquisition and visualization at 1 billion volume elements per second. All technological challenges and problems associated with such high scanning speed are discussed in detail as well as the solutions. In one configuration, the system acquires, processes and visualizes 26 volumes per second where each volume consists of 320 x 320 depth scans and each depth scan has 400 usable pixels. This is the fastest real-time OCT to date in terms of voxel rate. A 51 Hz volume rate is realized with half the frame number. In both ...

      Read Full Article
    1-15 of 15
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (14 articles) University of Lübeck
    2. (7 articles) Optores
    3. (3 articles) Ludwig Maximilian University of Munich
    4. (2 articles) Technical University of Munich
    5. (2 articles) Delft University of Technology
    6. (2 articles) Chinese Academy of Sciences
    7. (2 articles) Erasmus University
    8. (1 articles) Massachusetts Institute of Technology
    9. (1 articles) Northwestern University
    10. (1 articles) University College London
  3. Popular Articles

  4. Picture Gallery

    High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s A 4-D OCT Engine with 1 GVoxel/s Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm Analysis of FDML lasers with meter range coherence Thermo-elastic optical coherence tomography Feature Of The Week 09/10/2017: Thermo-elastic  Optical Coherence Tomography Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging Registration of histological brain images onto optical coherence tomography images based on shape information Influence of scan direction on subfoveal choroidal vascularity index using optical coherence tomography Subthreshold Nanosecond Laser for Non-resolving Central Serous Chorioretinopathy: A Double-masked Sham-controlled Randomised Trial