1. Articles from Sunki Lee

    1-3 of 3
    1. Feature Of The Week 8/31/14: Fully Integrated High-speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo using a Clinically-available NIRF Emitting Indocyanine Green to Detect Inflamed Lipid-rich Atheromata in Coronary-sized Vessels

      Feature Of The Week 8/31/14: Fully Integrated High-speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo using a Clinically-available NIRF Emitting Indocyanine Green to Detect Inflamed Lipid-rich Atheromata in Coronary-sized Vessels

      In current study, we fully integrated near-infrared fluorescence (NIRF) molecular imaging into intravascular OCT structural imaging. The OCT/NIRF single catheter imaging clearly demonstrated the microstructure of atheromata and simultaneously identified ICG-enhancing macrophage abundant lipid-rich areas of the plaques. Ex vivo NIRF imaging evidently validated in vivo OCT-NIRF imaging. NIRF signals on ex vivo fluorescence reflectance imaging colocalized well with in vivo NIRF imaging. In vitro ICG cell uptake, correlative fluorescence microscopy, and histopathology corroborated the in vivo imaging findings. Herein, our research team have solved the issues critical for application of this OCT/NIRF imaging technology to clinical practice ...

      Read Full Article
    2. Fully Integrated High-Speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo Using a Clinically Available Near-Infrared Fluorescence–Emitting Indocyanine Green to Detect Inflamed Lipid-Rich Atheromata in Coronary-Sized Vessels

      Fully Integrated High-Speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo Using a Clinically Available Near-Infrared Fluorescence–Emitting Indocyanine Green to Detect Inflamed Lipid-Rich Atheromata in Coronary-Sized Vessels

      Background— Lipid-rich inflamed coronary plaques a reprone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques invivo using fully integrated high-speed optical coherence tomography (OCT)/ near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration– a pproved indocyanine green (ICG). Methods a nd Results— A n integrated high-speed intravascular OCT/NIRF imaging c a theter a nd a du a l-mod a l OCT/NIRF system were constructed b a sed on a cl in ic a l OCT pl a tform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration– approved NIRF-emitting ICG ...

      Read Full Article
    1-3 of 3
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (3 articles) Korea University
    2. (3 articles) Hanyang University
    3. (2 articles) Korea Advanced Institute of Science and Technology
    4. (2 articles) FDA
    5. (1 articles) Abbott
    6. (1 articles) South China Normal University
    7. (1 articles) Sun Yat-Sen University
    8. (1 articles) Harvard University
    9. (1 articles) Massachusetts General Hospital
    10. (1 articles) National University of Ireland, Galway
    11. (1 articles) Capital Medical University
    12. (1 articles) Massachusetts Institute of Technology
    13. (1 articles) WiO Technology Limited
  3. Popular Articles

  4. Picture Gallery

    Three-dimensional intravascular optical coherence tomography rendering assessment of spontaneous coronary artery dissection concomitant with left main ostial critical stenosis Fully Integrated High-Speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo Using a Clinically Available Near-Infrared Fluorescence–Emitting Indocyanine Green to Detect Inflamed Lipid-Rich Atheromata in Coronary-Sized Vessels Feature Of The Week 8/31/14: Fully Integrated High-speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo using a Clinically-available NIRF Emitting Indocyanine Green to Detect Inflamed Lipid-rich Atheromata in Coronary-sized Vessels Trojan-Horse Diameter-Reducible Nanotheranostics for Macroscopic/Microscopic Imaging-Monitored Chemo-Antiangiogenic Therapy Thickness of retinal pigment epithelium–Bruch’s membrane complex in adult Chinese using optical coherence tomography Interocular symmetry of optical coherence tomography parameters in healthy children and adolescents Fluorescein Leakage and Optical Coherence Tomography Angiography Features of Microaneurysms in Diabetic Retinopathy Cross-free in both lateral and axial directions Fourier-domain full-field optical coherence tomography Microperimetry, Humphrey field analyzer, and optical coherence tomography in detecting glaucoma: a comparative performance study Scanning optimization of an electrothermally-actuated MEMS mirror for applications in optical coherence tomography endoscopy Near-infrared active superparamagnetic iron oxide nanoparticles for magnetomotive optical coherence tomography imaging and magnetic hyperthermia therapeutic applications Optical Coherence Tomography Identifies Visual Pathway Involvement Earlier than Visual Function Tests in Children with MRI-Verified Optic Pathway Gliomas