1. Articles from Xuan Wang

    1-7 of 7
    1. Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging

      Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging

      Optical imaging in the second near infrared region (NIR-II, 1000–1700 nm) provides higher resolution and deeper penetration depth for accurate and real-time vascular anatomy, blood dynamics, and function information, effectively contributing to the early diagnosis and curative effect assessment of vascular anomalies. Currently, NIR-II optical imaging demonstrates encouraging results including long-term monitoring of vascular injury and regeneration, real-time feedback of blood perfusion, tracking of lymphatic metastases, and imaging-guided surgery. This review summarizes the latest progresses of NIR-II optical imaging for angiography including fluorescence imaging, photoacoustic (PA) imaging, and optical coherence tomography (OCT). The development of current NIR-II fluorescence, PA ...

      Read Full Article
    2. A simple system of swept source optical coherence tomography for a large imaging depth range

      A simple system of swept source optical coherence tomography for a large imaging depth range

      In swept source optical coherence tomography (SSOCT), the imaging depth range sometimes limits its application, such as the whole eye measurement. The methods of extending depth range usually need to redesign the system or add some additional devices. In this paper, we propose a simple system of SSOCT for a large imaging depth range. The system is the same as the original SSOCT with using the swept source clock signal except for a slice glass in the reference arm. The large depth range is achieved by increasing the number of sampling point in every spectrum and wavenumber calibration. More sampling ...

      Read Full Article
    3. Passively Driven Probe Based on Miniaturized Propeller for Intravascular Optical Coherence Tomography

      Passively Driven Probe Based on Miniaturized Propeller for Intravascular Optical Coherence Tomography

      Optical coherent tomography (OCT) has enabled clinical applications ranging from ophthalmology to cardiology that revolutionized in vivo medical diagnostics in the last few decades, and a variety of endoscopic probes have been developed in order to meet the needs of various endoscopic OCT imaging. We propose a passive driven intravascular optical coherent tomography (IV-OCT) probe in this paper. Instead of using any electrically driven scanning device, the probe makes use of the kinetic energy of the fluid that flushes away the blood during the intravascular optical coherence tomography imaging. The probe converts it into the rotational kinetic energy of the ...

      Read Full Article
    4. Automatic spectral calibration for polarization-sensitive optical coherence tomography

      Automatic spectral calibration for polarization-sensitive optical coherence tomography

      Accurate wavelength assignment is important for Fourier domain polarizationsensitive optical coherence tomography. Incorrect wavelength mapping between the orthogonal horizontal (H) and vertical (V) polarization channels leads to broadening the axial point spread function and generating polarization artifacts. To solve the problem, we propose an automatic spectral calibration method by seeking the optimal calibration coefficient between wavenumber kH and kV. The method first performs a rough calibration to get the relationship between the wavelength λ and the pixel number x of the CCD for each channel. And then a precise calibration is taken to bring both polarization interferograms in the same k ...

      Read Full Article
    5. Depth-dependent dispersion compensation for full-depth OCT image

      Depth-dependent dispersion compensation for full-depth OCT image

      A depth-dependent dispersion compensation algorithm for enhancing the image quality of the Fourier-domain optical coherence tomography (OCT) is presented. The dispersion related with depth in the sample is considered. Using the iterative method, an analytical formula for compensating the depth-dependent dispersion in the sample is obtained. We apply depth-dependent dispersion compensation algorithm to process the phantom images and in vivo images. Using sharpness metric based on variation coefficient to compare the results processed with different dispersion compensation algorithms, we find that the depth-dependent dispersion compensation algorithm can improve image quality at full depth.

      Read Full Article
    6. A novel method for speckle reduction in optical coherence tomography by image registration

      A novel method for speckle reduction in optical coherence tomography by image registration

      Speckle noise is a key factor that can influence the image quality of optical coherence tomography (OCT). The averaging of multiple B-scans can effectively suppress the speckle noise. Because of the sample motion, the images have to be exactly aligned before averaging. In this paper, we propose a new method for OCT image registration that combines global and local registration. The method is able to align the large global displacements in axial and lateral directions, as well as local displacements caused by non-linear deformation between images. Compared with other OCT image registration methods, our method improves the signal-to-noise ratio and ...

      Read Full Article
    7. Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation

      Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation

      A novel full-range Fourier domain Doppler optical coherence tomography (full-range FD-DOCT) using sinusoidal phase modulation for B-M scan is proposed. In this sinusoidal B-M scan, zero optical path difference (OPD) position does not move corresponding to lateral scanning points in contrast to linear B-M scan. Since high phase sensitivity arises around the zero OPD position, the proposed full-range FD-DOCT can achieve easily high velocity sensitivity without mirror image around the zero OPD position. Velocity sensitivity dependent on the OPD and the interval of scanning points is examined, and flow velocity detection capability is verified through Doppler imaging of a flow ...

      Read Full Article
    1-7 of 7
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (5 articles) Chinese Academy of Sciences
    2. (1 articles) Carl Zeiss Meditec
  3. Popular Articles

  4. Picture Gallery

    Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation A novel method for speckle reduction in optical coherence tomography by image registration Depth-dependent dispersion compensation for full-depth OCT image Automatic spectral calibration for polarization-sensitive optical coherence tomography Passively Driven Probe Based on Miniaturized Propeller for Intravascular Optical Coherence Tomography A simple system of swept source optical coherence tomography for a large imaging depth range Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging Editorial – Optical Coherence Tomography Angiography: Considerations Regarding Diagnostic Parameters Imaging of the optic nerve: technological advances and future prospects Optical coherence tomography assessment of pulmonary vascular remodeling in advanced heart failure. The OCTOPUS-CHF study Systems and methods for automated widefield optical coherence tomography angiography OCT signal processing device and recording medium