1. Articles from Kirill V. Larin

    1-24 of 146 1 2 3 4 5 6 »
    1. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography

      Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography

      Eye injury due to alkali burn is a severe ocular trauma that can profoundly affect corneal structure and function, including its biomechanical properties. Here, we assess the changes in the mechanical behavior of mouse corneas in response to alkali-induced injury by conducting longitudinal measurements using optical coherence elastography (OCE). A non-contact air-coupled ultrasound transducer was used to induce elastic waves in control and alkali-injured mouse corneas in vivo, which were imaged with phase-sensitive optical coherence tomography. Corneal mechanical properties were estimated using a modified Rayleigh-Lamb wave model, and results show that Young's modulus of alkali burned corneas were significantly ...

      Read Full Article
    2. Multimodal imaging system combining optical coherence tomography and Brillouin microscopy for neural tube imaging

      Multimodal imaging system combining optical coherence tomography and Brillouin microscopy for neural tube imaging

      To understand the dynamics of tissue stiffness during neural tube formation and closure in a murine model, we have developed a multimodal, coaligned imaging system combining optical coherence tomography (OCT) and Brillouin microscopy. Brillouin microscopy can map the longitudinal modulus of tissue but cannot provide structural images. Thus, it is limited for imaging dynamic processes such as neural tube formation and closure. To overcome this limitation, we have combined Brillouin microscopy and OCT in one coaligned instrument. OCT provided depth-resolved structural imaging with a micrometer-scale spatial resolution to guide stiffness mapping by Brillouin modality. 2D structural and Brillouin frequency shift ...

      Read Full Article
    3. Assessing Porcine Iris Elasticity and Mechanical Anisotropy with Optical Coherence Elastography

      Assessing Porcine Iris Elasticity and Mechanical Anisotropy with Optical Coherence Elastography

      The relaxation and contraction of the sphincter and dilator muscles of the iris play a critical role in vision, yet little is known about the biomechanic al properties of these mus cles. This study aimed to determine the elastic properties of the iris as a function of its anatomy and intraocular pressure. A high - resolution phase - sensitive OCE system was employed to detect acoustic radiation force induced propagation of elastic waves in the porcine iris in situ. Experiments were conducted at four different intraocular pressures (5, 10, 20, and 30 mmHg) with mechanical excitation at 1 kHz. We found that ...

      Read Full Article
    4. Ultra-fast dynamic line-field optical coherence elastography

      Ultra-fast dynamic line-field optical coherence elastography

      Abstract In this work, we present an ultra-fast line-field optical coherence elastography system (LF-OCE) with an 11.5 MHz equivalent A-line rate. The system was composed of a line-field spectral domain optical coherence tomography system based on a supercontinuum light source, Michelson-type interferometer, and a high-speed 2D spectrometer. The system performed ultra-fast imaging of elastic waves in tissue-mimicking phantoms of various elasticities.

      Read Full Article
    5. Accuracy of Common Motion Estimators in Wave-Based Optical Coherence Elastography

      Accuracy of Common Motion Estimators in Wave-Based  Optical Coherence Elastography

      Abstract. Motion estimators are commonly used in shear wave optical coherence elastography to compute small displacements. This work focuses on comparing three motion estimators: Kasai, Loupas, and the vector method. Our results show that the vector method is superi or in low - SNR, low - amplitude situations for group velocity calculation and profile reconstruction . © 202 1 Journal of Biomedical Photonics & Engineering.

      Read Full Article
    6. Multimodal high-resolution embryonic imaging with light sheet fluorescence microscopy and optical coherence tomography

      Multimodal high-resolution embryonic imaging with light sheet fluorescence microscopy and optical coherence tomography

      A high-resolution imaging system combining optical coherence tomography (OCT) and light sheet fluorescence microscopy (LSFM) was developed. LSFM confined the excitation to only the focal plane, removing the out of plane fluorescence. This enabled imaging a murine embryo with higher speed and specificity than traditional fluorescence microscopy. OCT gives information about the structure of the embryo from the same plane illuminated by LSFM. The co-planar OCT and LSFM instrument was capable of performing co-registered functional and structural imaging of mouse embryos simultaneously.

      Read Full Article
    7. Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data

      Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data

      Optical coherence tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (SS-OCT) images using undersampled spectral data, without any spatial aliasing artifacts. This neural network-based image reconstruction does not require any hardware changes to the optical setup and can be easily integrated with existing swept-source or spectral-domain OCT systems to reduce the amount of raw spectral data to be acquired. To show the efficacy of this framework, we trained and blindly tested a deep neural network using ...

      Read Full Article
    8. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: repeatability and reproducibility

      In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: repeatability and reproducibility

      Reliable and quantitative assessment of corneal biomechanics is important for the detection and treatment of corneal disease. The present study evaluates the repeatability and reproducibility of a novel optical coherence tomography (OCT)-based elastography (OCE) method for in vivo quantification of corneal natural frequency in 20 normal human eyes. Sub-micron corneal oscillations were induced by repeated low-force (13 Pa) microliter air pulses at the corneal apex and were observed by common-path phase-sensitive OCT imaging adjacent to a measurement region of 1–6.25 mm 2 . Corneal natural frequencies were quantified using a single degree of freedom model based on the ...

      Read Full Article
    9. Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data

      Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data

      Optical Coherence Tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (SS-OCT) images using undersampled spectral data, without any spatial aliasing artifacts. This neural network-based image reconstruction does not require any hardware changes to the optical set- up and can be easily integrated with existing swept-source or spectral domain OCT systems to reduce the amount of raw spectral data to be acquired. To show the efficacy of this framework, we trained and blindly tested a deep neural ...

      Read Full Article
    10. Heartbeat optical coherence elastography: corneal biomechanics in vivo

      Heartbeat optical coherence elastography: corneal biomechanics in vivo

      Significance: Mechanical assessment of the cornea can provide important structural and functional information regarding its health. Current clinically available tools are limited in their efficacy at measuring corneal mechanical properties. Elastography allows for the direct estimation of mechanical properties of tissues in vivo but is generally performed using external excitation force. Aim: To show that heartbeat optical coherence elastography (Hb-OCE) can be used to assess the mechanical properties of the cornea in vivo. Approach: Hb-OCE was utilized to detect Hb-induced deformations in the rabbit cornea in vivo without the need for external excitation. Furthermore, we demonstrate how this technique can ...

      Read Full Article
    11. In Vivo Human Corneal Shear-wave Optical Coherence Elastography

      In Vivo Human Corneal Shear-wave Optical Coherence Elastography

      SIGNIFICANCE A novel imaging technology, dynamic optical coherence elastography (OCE), was adapted for clinical noninvasive measurements of corneal biomechanics. PURPOSE Determining corneal biomechanical properties is a long-standing challenge. Elasticity imaging methods have recently been developed and applied for clinical evaluation of soft tissues in cancer detection, atherosclerotic plaque evaluation, surgical guidance, and more. Here, we describe the use of dynamic OCE to characterize mechanical wave propagation in the human cornea in vivo , thus providing a method for clinical determination of corneal biomechanical properties. METHODS High-resolution phase-sensitive optical coherence tomography imaging was combined with microliter air-pulse tissue stimulation to perform dynamic ...

      Read Full Article
    12. Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics

      Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics

      We present an air-coupled ultrasonic radiation force probe co-focused with a phase-sensitive optical coherence tomography (OCT) system for quantitative wave-based elastography. A custom-made 1 MHz spherically focused piezoelectric transducer with a concentric 10 mm wide circular opening allowed for confocal micro-excitation of waves and phase-sensitive OCT imaging.

      Read Full Article
    13. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus

      Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus

      Purpose : Currently, the biomechanical properties of the corneo-scleral limbus when the eye-globe deforms are largely unknown. The purpose of this study is to evaluate changes in elasticity of the cornea, sclera, and limbus when subjected to different intraocular pressures (IOP) using wave-based optical coherence elastography (OCE). Special attention was given to the elasticity changes of the limbal region with respect to the elasticity variations in the neighboring corneal and scleral regions. Methods : Continuous harmonic elastic waves (800 Hz) were mechanically induced in the sclera near the corneo-sclera limbus of in situ porcine eye-globes ( n = 8). Wave propagation was imaged using ...

      Read Full Article
    14. Optical coherence tomography angiography to evaluate murine fetal brain vasculature changes caused by prenatal exposure to nicotine

      Optical coherence tomography angiography to evaluate murine fetal brain vasculature changes caused by prenatal exposure to nicotine

      Maternal smoking causes several defects ranging from intrauterine growth restriction to sudden infant death syndrome and spontaneous abortion. While several studies have documented the effects of prenatal nicotine exposure in development and behavior, acute vasculature changes in the fetal brain due to prenatal nicotine exposure have not been evaluated yet. This study uses correlation mapping optical coherence angiography to evaluate changes in fetal brain vasculature flow caused by maternal exposure to nicotine during the second trimester-equivalent of gestation in a mouse model. The effects of two different doses of nicotine were evaluated. Results showed a decrease in the vasculature for ...

      Read Full Article
    15. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography

      Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography

      Significance: It is generally agreed that the corneal mechanical properties are strongly linked to many eye diseases and could be used to assess disease progression and response to therapies. Elastography is the most notable method of assessing corneal mechanical properties, but it generally requires some type of external excitation to induce a measurable displacement in the tissue. Aim: We present Heartbeat Optical Coherence Elastography (Hb-OCE), a truly passive method that can measure the elasticity of the cornea based on intrinsic corneal displacements induced by the heartbeat. Approach: Hb-OCE measurements were performed in untreated and UV-A/riboflavin cross-linked porcine corneas ex ...

      Read Full Article
    16. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration

      Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration

      Purpose : Normal physiological movements (e.g., respiration and heartbeat) induce eye motions during clinical measurements of human corneal biomechanical properties using optical coherence elastography (OCE). We quantified the effects of respiratory and cardiac-induced eye motions on clinical corneal OCE measurement precision and repeatability. Methods : Corneal OCE was performed using low-force, micro-air-pulse tissue stimulation and high-resolution phase-sensitive optical coherence tomography (OCT) imaging. Axial surface displacements of the corneal apex were measured (M-mode) at a 70-kHz sampling rate and three different stimulation pressures (20–60 Pa). Simultaneously, the axial corneal position was tracked with structural OCT imaging, while the heartrate and respiration ...

      Read Full Article
    17. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy

      Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy

      Assessing the biomechanical properties of the crystalline lens can provide crucial information for diagnosing disease and guiding precision therapeutic interventions. Existing noninvasive methods have been limited to global measurements. Here, we demonstrate the quantitative assessment of the elasticity of crystalline lens with a multimodal optical elastography technique, which combines dynamic wave-based optical coherence elastography (OCE) and Brillouin microscopy to overcome the drawbacks of individual modalities. OCE can provide direct measurements of tissue elasticity rapidly and quantitatively, but it is a challenge to image transparent samples such as the lens because this technique relies on backscattered light. On the other hand ...

      Read Full Article
    18. Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications

      Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications

      Significance : Shear wave optical coherence elastography is an emerging technique for characterizing tissue biomechanics that relies on the generation of elastic waves to obtain the mechanical contrast. Various techniques, such as contact, acoustic, and pneumatic methods, have been used to induce elastic waves. However, the lack of higher-frequency components within the elastic wave restricts their use in thin samples. The methods also require moving parts and/or tubing, which therefore limits the extent to which they can be miniaturized. Aim : To overcome these limitations, we propose an all-optical approach using photothermal excitation. Depending on the absorption coefficient of the sample ...

      Read Full Article
    19. Recent progress in optical probing and manipulation of tissue: introduction

      Recent progress in optical probing and manipulation of tissue: introduction

      This feature issue of Biomedical Optics Express represents a cross-section of the most recent work in tissue optics, including exciting developments in tissue optical clearing, deep tissue imaging, optical elastography, nanophotonics in tissue, and therapeutic applications of light, amongst others. A collection of 33 papers provides a comprehensive overview of current research in tissue optics, much of it inspired and informed by the pioneering work of Prof. Valery Tuchin. The issue contains three invited manuscripts and several mini-reviews that we hope will benefit researchers in this exciting area.

      Read Full Article
    20. Assessing the Acute Effects of Prenatal Synthetic Cannabinoid Exposure on Murine Fetal Brain Vasculature Using Optical Coherence Tomography

      Assessing the Acute Effects of Prenatal Synthetic Cannabinoid Exposure on Murine Fetal Brain Vasculature Using Optical Coherence Tomography

      Marijuana is one of the most commonly abused substances during pregnancy. Synthetic cannabinoids (SCBs) are a group of heterogeneous compounds that are 40‐ to 600‐fold more potent than ∆ 9 ‐tetrahydrocannabinol , the major psychoactive component of marijuana. With SCBs being legally available for purchase and the prevalence of unplanned pregnancies, the possibility of prenatal exposure to SCBs is high. However, the effects of prenatal SCB exposure on embryonic brain development are not well understood. In this study, we use complex correlation mapping optical coherence angiography to evaluate changes in murine fetal brain vasculature in utero , minutes after maternal exposure to ...

      Read Full Article
    21. Optical coherence elastography of cold cataract in porcine lens

      Optical coherence elastography of cold cataract in porcine lens

      Cataract is one of the most prevalent causes of blindness around the world. Understanding the mechanisms of cataract development and progression is important for clinical diagnosis and treatment. Cold cataract has proven to be a robust model for cataract formation that can be easily controlled in the laboratory. There is evidence that the biomechanical properties of the lens can be significantly changed by cataract. Therefore, early detection of cataract, as well as evaluation of therapies, could be guided by characterization of lenticular biomechanical properties. In this work, we utilized optical coherence elastography (OCE) to monitor the changes in biomechanical properties ...

      Read Full Article
    22. Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography

      Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography

      In this study, we investigated the relationship between the biomechanical properties of the crystalline lens and intraocular pressure (IOP) using a confocal acoustic radiation force (ARF) and phase-sensitive optical coherence elastography (OCE) system. ARF induced a small displacement at the apex of porcine lenses in situ at various artificially controlled IOPs. Maximum displacement, relaxation rate, and Young’s modulus were utilized to assess the stiffness of the crystalline lens. The results showed that the stiffness of the crystalline increased as IOP increased, but the lens stiffening was not as significant as the stiffening of other ocular tissues such as the ...

      Read Full Article
    23. Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues

      Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues

      Accurate measurements of microelastic properties of soft tissues in-vivo using optical coherence elastography can be affected by motion artifacts caused by cardiac and respiratory cycles. This problem can be overcome using a multielement ultrasound transducer probe where each ultrasound transducer is capable of generating acoustic radiation force (ARF) and, therefore, creating shear waves in tissue. These shear waves, produced during the phase of cardiac and respiratory cycles when tissues are effectively stationary, are detected at the same observation point using phase-sensitive optical coherence tomography (psOCT). Given the known distance between the ultrasound transducers, the speed of shear wave propagation can ...

      Read Full Article
    24. Modified wavelength scanning interferometry for simultaneous tomography and topography of the cornea with Fourier domain optical coherence tomography

      Modified wavelength scanning interferometry for simultaneous tomography and topography of the cornea with Fourier domain optical coherence tomography

      Visual acuity is dependent on corneal shape and size. A minor variation in surface geometry can cause a deformation of corneal geometry, which affects its optical performance. In this work we demonstrate an algorithm for the simultaneous measurement of corneal tomography and topography with a traditional point-scanning Fourier domain optical coherence tomography (FD-OCT) system. A modified wavelength scanning interferometry (mWSI) algorithm enabled topographical evaluation of the surface with nanometer-scale resolution, which is superior to the micrometer-scale resolution of traditional OCT structural imaging. We validated the technique with an optically flat mirror, standard roughness gauges, and atomic force microscopy (AFM). The ...

      Read Full Article
    1-24 of 146 1 2 3 4 5 6 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (144 articles) University of Houston
    2. (71 articles) Baylor College of Medicine
    3. (23 articles) Saratov State University
    4. (11 articles) University of Texas at Austin
    5. (8 articles) University of Alabama
    6. (4 articles) University of Miami
    7. (4 articles) Thorlabs
    8. (2 articles) Cardiovascular Research Foundation
    9. (2 articles) Shanghai Jiao Tong University
    10. (2 articles) Columbia University
    11. (1 articles) Columbia University
    12. (1 articles) University of Rochester
    13. (1 articles) Stanford University
    14. (1 articles) Johns Hopkins University
    15. (1 articles) National University of Singapore
  3. Popular Articles

  4. Picture Gallery

    Assessing molecular diffusion in tissues using optical coherence tomography Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography The nonlinear relationship between concentration of analyte and its permeability coefficient in ocular tissues Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT Imaging of mouse embryonic eye development using optical coherence tomography Postdoctoral Position in Optical Coherence Tomography / Optical Coherence Elastography at University of Houston Optical coherence tomography findings in patients with transfusion-dependent β-thalassemia Higher-order regression three-dimensional motion-compensation method for real-time optical coherence tomography volumetric imaging of the cornea Optical coherence tomography image based eye disease detection using deep convolutional neural network Optical Coherence Tomography Biomarkers in Predicting Treatment Outcomes of Diabetic Macular Edema After Dexamethasone Implants Macular and Optic Disc Parameters in Children with Amblyopic and Nonamblyopic Eyes under Optical Coherence Tomography Fundus Images Optical coherence tomography assessment of the enamel surface after debonding the ceramic brackets using three different techniques