1. Articles from Tsung-Han Tsai

    1-24 of 30 1 2 »
    1. Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source

      Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source

      Endoscopic optical coherence tomography (OCT) instruments are mostly side viewing and rely on at least one proximal scan, thus limiting accuracy of volumetric imaging and en face visualization. Previous forward-viewing OCT devices had limited axial scan speeds. We report a forward-viewing fiber scanning 3D-OCT probe with 900 μm field of view and 5 μm transverse resolution, imaging at 1 MHz axial scan rate in the human gastrointestinal tract. The probe is 3.3 mm diameter and 20 mm rigid length, thus enabling passage through the endoscopic channel. The scanner has 1.8 kHz resonant frequency, and each volumetric acquisition takes ...

      Read Full Article
    2. Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography

      Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography

      Radiofrequency ablation (RFA) is widely used for the eradication of dysplasia and the treatment of early stage esophageal carcinoma in patients with Barrett’s esophagus (BE). However, there are several factors, such as variation of BE epithelium (EP) thickness among individual patients and varying RFA catheter-tissue contact, which may compromise RFA efficacy. We used a high-speed optical coherence tomography (OCT) system to identify and monitor changes in the esophageal tissue architecture from RFA. Two different OCT imaging/RFA application protocols were performed using an ex vivo swine esophagus model: (1) post-RFA volumetric OCT imaging for quantitative analysis of the coagulum ...

      Read Full Article
    3. Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy (CLE) and narrowband imaging (NBI) have been used to investigate vascular changes as hallmarks of early cancer in the GI tract. However, the limited frame rate and field of view make CLE imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high speed volumetric imaging of subsurface features at near-microscopic resolution, and can image microvasculature without exogenous contrast agents such as fluorescein, which obliterates the image in areas of bleeding, or after biopsies and resections. OCT has been ...

      Read Full Article
    4. Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy1 and narrow band imaging (NBI)2 have been used to investigate vascular changes as hallmarks of early cancer in the gastrointestinal tract. However, the limited frame rate and field of view make confocal laser endomicroscopy imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high-speed volumetric imaging of subsurface features at near-microscopic resolution,3, 4 and can image microvasculature without exogenous contrast agents,5 such as fluorescein, which obliterates the image in areas of bleeding, or after ...

      Read Full Article
    5. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology

      Ultrahigh speed endoscopic optical coherence tomography for gastroenterology

      We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging ...

      Read Full Article
    6. Correction of rotational distortion for catheter-based en face OCT and OCT angiography

      Correction of rotational distortion for catheter-based en face OCT and OCT angiography

      We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm.

      Read Full Article
    7. Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature

      Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy 1 and narrow band imaging (NBI) 2 have been used to investigate vascular changes as hallmarks of early cancer in the gastrointestinal tract. However, the limited frame rate and field of view make confocal laser endomicroscopy imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high-speed volumetric imaging of subsurface features at near-microscopic resolution, 3,4 and can image microvasculature without exogenous contrast agents, 5 such as fluorescein, which obliterates the image in areas of bleeding, or after ...

      Read Full Article
    8. Endoscopic Optical Coherence Tomography for Clinical Gastroenterology

      Endoscopic Optical Coherence Tomography for Clinical Gastroenterology

      Optical coherence tomography (OCT) is a real-time optical imaging technique that is similar in principle to ultrasonography, but employs light instead of sound waves and allows depth-resolved images with near-microscopic resolution. Endoscopic OCT allows the evaluation of broad-field and subsurface areas and can be used ancillary to standard endoscopy, narrow band imaging, chromoendoscopy, magnification endoscopy, and confocal endomicroscopy. This review article will provide an overview of the clinical utility of endoscopic OCT in the gastrointestinal tract and of recent achievements using state-of-the-art endoscopic 3D-OCT imaging systems.

      Read Full Article
    9. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

      Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

      We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in ...

      Read Full Article
    10. Compact piezoelectric transducer fiber scanning probe for optical coherence tomography

      Compact piezoelectric transducer fiber scanning probe for optical coherence tomography

      We developed a compact, optical fiber scanning piezoelectric transducer (PZT) probe for endoscopic and minimally invasive optical coherence tomography (OCT). Compared with previous forward-mount fiber designs, we present a reverse-mount design that achieves a shorter rigid length. The fiber was mounted at the proximal end of a quadruple PZT tube and scanned inside the hollow PZT tube to reduce the probe length. The fiber resonant frequency was 338 Hz using a 17-mm-long fiber. A 0.9 mm fiber deflection was achieved with a driving amplitude of 35 V. Using a GRIN lens-based optical design with a 1.3 × magnification, a ...

      Read Full Article
    11. Swept source optical coherence microscopy using a 1310 nm VCSEL light source

      Swept source optical coherence microscopy using a 1310 nm VCSEL light source

      We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0 ...

      Read Full Article
    12. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology

      Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology

      We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high ...

      Read Full Article
    13. Ultrahigh speed endoscopic optical coherence tomography using micro-motor imaging catheter and VCSEL technology

      Ultrahigh speed endoscopic optical coherence tomography using micro-motor imaging catheter and VCSEL technology

      We developed a micro-motor based miniature catheter with an outer diameter of 3mm for ultrahigh speed endoscopic optical coherence tomography (OCT) using vertical cavity surface-emitting laser (VCSEL) at a 1MHz axial scan rate. The micro-motor can rotate a micro-prism at 1,200-72,000rpm (corresponding to 20- 1,200fps) with less than 5V driving voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back for a long distance to acquire three-dimensional (3D) dataset covering a large area on the specimen. VCSEL provides high a-line rate to support ...

      Read Full Article
    14. Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett's esophagus radiofrequency ablation treatment response (with videos)

      Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett's esophagus radiofrequency ablation treatment response (with videos)

      Background Radiofrequency ablation (RFA) is effective for treating Barrett's esophagus (BE) but often involves multiple endoscopy sessions over several months to achieve complete response. Objective Identify structural markers that correlate with treatment response by using 3-dimensional (3-D) optical coherence tomography (OCT; 3-D OCT). Design Cross-sectional. Setting Single teaching hospital. Patients Thirty-three patients, 32 male and 1 female, with short-segment (<3 cm) BE undergoing RFA treatment. Intervention Patients were treated with focal RFA, and 3-D OCT was performed at the gastroesophageal junction before and immediately after the RFA treatment. Patients were re-examined with standard endoscopy 6 to 8 weeks later ...

      Read Full Article
    15. Comparison of Tissue Architectural Changes between Radiofrequency Ablation and Cryospray Ablation in Barrett’s Esophagus Using Endoscopic Three-Dimensional Optical Coherence Tomography

      Comparison of Tissue Architectural Changes between Radiofrequency Ablation and Cryospray Ablation in Barrett’s Esophagus Using Endoscopic Three-Dimensional Optical Coherence Tomography

      Two main nonsurgical endoscopic approaches for ablating dysplastic and early cancer lesions in the esophagus have gained popularity, namely, radiofrequency ablation (RFA) and cryospray ablation (CSA). We report a uniquely suited endoscopic and near-microscopic imaging modality, three-dimensional (3D) optical coherence tomography (OCT), to assess and compare the esophagus immediately after RFA and CSA. The maximum depths of architectural changes were measured and compared between the two treatment groups. RFA was observed to induce 230~260 

      Read Full Article
    16. Cervical inlet patch-optical coherence tomography imaging and clinical significance

      Cervical inlet patch-optical coherence tomography imaging and clinical significance

      AIM: To demonstrate the feasibility of optical coherence tomography (OCT) imaging in differentiating cervical inlet patch (CIP) from normal esophagus, Barrett’s esophagus (BE), normal stomach and duodenum. METHODS: This study was conducted at the Veterans Affairs Boston Healthcare System (VABHS). Patients undergoing standard esophagogastroduodenoscopy at VABHS, including one patient with CIP, one representative patient with BE and three representative normal subjects were included. White light video endoscopy was performed and endoscopic 3D-OCT images were obtained in each patient using a prototype OCT system. The OCT imaging probe passes through the working channel of the endoscope to enable simultaneous video ...

      Read Full Article
    17. Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos)

      Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos)

      Background: Radiofrequency ablation (RFA) is an endoscopic technique used to eradicate Barrett's esophagus (BE). However, such ablation can commonly lead to neosquamous epithelium overlying residual BE glands not visible by conventional endoscopy and may evade detection on random biopsy samples.Objective: To demonstrate the capability of endoscopic 3-dimensional optical coherence tomography (3D-OCT) for the identification and characterization of buried glands before and after RFA therapy.Design: Cross-sectional study.Setting: Single teaching hospital.Patients: Twenty-six male and 1 female white patients with BE undergoing RFA treatment.Interventions: 3D-OCT was performed at the gastroesophageal junction in 18 patients before attaining complete ...

      Read Full Article
    18. Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography

      Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography

      We developed a piezoelectric-transducer- (PZT) based miniature catheter with an outer diameter of 3.5 mm for ultrahigh-speed endoscopic optical coherence tomography (OCT). A miniaturized PZT bender actuates a fiber and the beam is scanned through a GRIN lens and micro-prism to provide high-speed, side-viewing capability. The probe optics can be pulled back over a long distance to acquire three-dimensional (3D) data sets covering a large area. Imaging is performed with 11 μm axial resolution in air (8 μm in tissue) and 20 μm transverse resolution, at 960 frames per second with a Fourier domain mode-locked laser operating at 480 ...

      Read Full Article
    19. Piezoelectric transducer based miniature catheter for ultrahigh speed endoscopic optical coherence tomography

      Piezoelectric transducer based miniature catheter for ultrahigh speed endoscopic optical coherence tomography

      We developed a piezoelectric transducer (PZT) based miniature catheter with an outer diameter of 3 mm for ultrahigh speed endoscopic optical coherence tomography (OCT) using Fourier domain modelocked (FDML) laser at a 480 kHz axial scan rate. The miniaturized PZT bender actuates a fiber to provide high scanning speed. The side-viewing probe can be pulled back for a long distance to acquire three-dimensional (3D) dataset covering a large area on the specimen. Operating with a high speed data acquisition (DAQ) system, OCT imaging with 6.5 mm imaging range, 10 μm axial resolution, 20 μm lateral resolution, and frame rate ...

      Read Full Article
    20. Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues

      Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues

      3D tissue imaging methods are expected to improve surgical management of cancer. In this study, we examined the feasibility of two 3D imaging technologies, optical coherence tomography (OCT) and optical coherence microscopy (OCM), to view human breast specimens based on intrinsic optical contrast. Specifically, we imaged 44 ex vivo breast specimens including 34 benign and 10 malignant lesions with an integrated OCT and OCM system developed in our laboratory. The system enabled 4 um axial resolution (OCT and OCM) with 14 um (OCT) and 2 um (OCM) transverse resolution, respectively. OCT and OCM images were compared with corresponding histologic sections ...

      Read Full Article
    21. Features of Sub-Epithelial Glandular Structures on Three-Dimensional Endoscopic Optical Coherence Tomography (3D-EOCT) After Endoscopic Mucosal Ablation

      Features of Sub-Epithelial Glandular Structures on Three-Dimensional Endoscopic Optical Coherence Tomography (3D-EOCT) After Endoscopic Mucosal Ablation

      Abstracts submitted to ASGE 2010. Endoscopic mucosal ablative therapies are becoming accepted as a treatment for Barrett's esophagus (BE) with high-grade dysplasia. Radiofrequency ablation (RFA) has been shown to be effective in achieving broad and superficial BE ablation and replacement with normal-appearing squamous epithelium. Endoscopic optical coherence tomography (EOCT) is an imaging technique that uniquely allows visualization of sub-surface structures. The new three-dimensional EOCT (3D-EOCT) provides both cross-sectional and en face images of examined structures. 3D-EOCT may represent a novel method for post-ablation BE surveillance by revealing different glandular structures underneath the post-ablative surface epithelium.

      Read Full Article
    22. Integrated optical coherence tomography and optical coherence microscopy imaging of human pathology

      Integrated optical coherence tomography and optical coherence microscopy imaging of human pathology

      Excisional biopsy is the current gold standard for disease diagnosis; however, it requires a relatively long processing time and it may also suffer from unacceptable false negative rates due to sampling errors. Optical coherence tomography (OCT) is a promising imaging technique that provide real-time, high resolution and three-dimensional (3D) images of tissue morphology. Optical coherence microscopy (OCM) is an extension of OCT, combining both the coherence gating and the confocal gating techniques. OCM imaging achieves cellular resolution with deeper imaging depth compared to confocal microscopy. An integrated OCT/OCM imaging system can provide co-registered multiscale imaging of tissue morphology. 3D-OCT ...

      Read Full Article
    23. Endoscopic 3D-OCT reveals buried glands following radiofrequency ablation of Barrett's esophagus

      Endoscopic 3D-OCT reveals buried glands following radiofrequency ablation of Barrett's esophagus

      Barrett's esophagus (BE) with high-grade dysplasia is generally treated by endoscopic mucosal resection or esophagectomy. Radiofrequency ablation (RFA) is a recent treatment that allows broad and superficial ablation for BE. Endoscopic three-dimensional optical coherence tomography (3D-OCT) is a volumetric imaging technique that is uniquely suited for follow-up surveillance of RFA treatment. 3D-OCT uses a thin fiberoptic imaging catheter placed down the working channel of a conventional endoscope. 3D-OCT enables en face and cross-sectional evaluation of the esophagus for detection of residual BE, neo-squamous mucosa, or buried BE glands. Patients who had undergone RFA treatment with the BARRX HALO90 system ...

      Read Full Article
    1-24 of 30 1 2 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (30 articles) Massachusetts Institute of Technology
    2. (30 articles) Tsung-Han Tsai
    3. (30 articles) James G. Fujimoto
    4. (19 articles) Hsiang-Chieh Lee
    5. (19 articles) Hiroshi Mashimo
    6. (18 articles) Chao Zhou
    7. (15 articles) Harvard University
    8. (12 articles) Benjamin M. Potsaid
    9. (12 articles) Yuankai K. Tao
    10. (12 articles) Osman O. Ahsen
    11. (2 articles) Medical University of Vienna
    12. (2 articles) Christoph K. Hitzenberger
    13. (1 articles) Harvard University
    14. (1 articles) Massachusetts General Hospital
    15. (1 articles) Kobe University Graduate School of Medicine
    16. (1 articles) Federal University of Pernambuco
    17. (1 articles) Toshiro Shinke
    18. (1 articles) Junya Shite
    19. (1 articles) Adolf F. Fercher
    20. (1 articles) Takayuki Okamura
  3. Popular Articles

  4. Picture Gallery

    Three-dimensional endomicroscopy of the human colon using optical coherence tomography Frequency comb swept lasers Integrated optical coherence tomography and optical coherence microscopy imaging of human pathology Endoscopic 3D-OCT reveals buried glands following radiofrequency ablation of Barrett's esophagus Features of Sub-Epithelial Glandular Structures on Three-Dimensional Endoscopic Optical Coherence Tomography (3D-EOCT) After Endoscopic Mucosal Ablation Piezoelectric transducer based miniature catheter for ultrahigh speed endoscopic optical coherence tomography Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos) Comparison of Tissue Architectural Changes between Radiofrequency Ablation and Cryospray Ablation in Barrett’s Esophagus Using Endoscopic Three-Dimensional Optical Coherence Tomography Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature Impact of Guidewire Recrossing Point into Stent Jailed Side Branch for Optimal Kissing Balloon Dilatation - Corelab 3D Optical Coherence Tomography Analysis Statistical Models of Signal and Noise and Fundamental Limits of Segmentation Accuracy in Retinal Optical Coherence Tomography