1. Articles from Geert Springeling

    1-6 of 6
    1. Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy

      Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy

      Intravascular optical coherence tomography (IV-OCT) has gained widespread use over the past few years, offering highly detailed images of coronary artery pathologies and interventions (1) . In contrast to the cross-sectional view, longitudinal sections and 3-dimensional (3D) renderings are affected by cardiac motion artifacts and undersampling, complicating interpretation and measurements (2) . We developed Heartbeat OCT, a new OCT method that achieves up to 4,000 frames/s imaging speed for isotropically sampled volume datasets acquired within the diastolic phase of 1 cardiac cycle to restore 3D IV-OCT image fidelity. In this research letter, we present the first in vivo data acquired ...

      Read Full Article
    2. Feature Of The Week 12/06/2015: Heartbeat Optical Coherence Tomography

      Feature Of The Week 12/06/2015: Heartbeat Optical Coherence Tomography

      Intravascular optical coherence tomography (IV-OCT) has gained widespread use over the past few years, offering highly detailed images of the coronary artery pathologies and interventions. In contrast to the cross-sectional view, longitudinal sections and three-dimensional (3D) renderings are affected by cardiac motion artifacts and undersampling, complicating interpretation and measurements. We developed Heartbeat OCT, a new OCT method that overcomes these issues. This study aims to demonstrate in vivo Heartbeat OCT in a preclinical setting, imaging eliminating cardiac motion artifacts, undersampling and non-uniform rotational distortion, to generate high-quality OCT volumes. Using a micro motor actuated catheter and a MHz sweep rate ...

      Read Full Article
    3. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography

      Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography

      Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called “Heartbeat OCT”, combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s ...

      Read Full Article
    4. Feature Of The Week 6/30/13: Ultrafast Intravascular Optical Coherence Tomography Imaging

      Feature Of The Week 6/30/13: Ultrafast Intravascular Optical Coherence Tomography Imaging

      The fastest commercial intravascular optical coherence tomography (OCT) systems acquire 160 frames/second with 500 lines/frame, and the pullback speed is limited to 40 mm∕s. In this situation, the images are under sampled in the pullback direction: Only 12% of the lumen is sampled because the sampling interval of 250 μm is much larger than the transverse resolution, which is approximately 30 μm. In clinical situations, the cardiac motion also affects the OCT acquisition. The pullback procedure for the whole artery takes several seconds. The cardiac motion during acquisition will cause inaccuracy in frame spacing and possibly frame ...

      Read Full Article
    5. Ultrahigh-speed intravascular optical coherence tomography imaging at 3200 frames per second

      Ultrahigh-speed intravascular optical coherence tomography imaging at 3200 frames per second

      We demonstrated intravascular OCT imaging with frame rate up to 3.2 kHz (192,000 rpm scanning). This was achieved by using a custom-built catheter in which the circumferential scanning was actuated by a 1.0 mm diameter synchronous motor. The OCT system was based on a Fourier Domain Mode Locked laser operating at an A-line rate of 1.6 MHz. The diameter of the catheter was 1.1 mm at the tip. Ex vivo images of human coronary artery (~78.4 mm length) were acquired at a pullback speed of 100 mm/s. True 3D volumetric imaging of the ...

      Read Full Article
    6. Intravascular optical coherence tomography imaging at 3200 frames per second

      Intravascular optical coherence tomography imaging at 3200 frames per second

      We demonstrate intravascular optical coherence tomography (OCT) imaging with frame rate up to 3.2 kHz (192,000 rpm scanning). This was achieved by using a custom-built catheter in which the circumferential scanning was actuated by a 1.0 mm diameter synchronous motor. The OCT system, with an imaging depth of 3.7 mm (in air), is based on a Fourier domain mode locked laser operating at an A-line rate of 1.6 MHz. The diameter of the catheter is 1.1 mm at the tip. Ex vivo images of human coronary artery (78.4 mm length) were acquired at ...

      Read Full Article
    1-6 of 6
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (6 articles) Robert A. Huber
    2. (6 articles) Gijs van Soest
    3. (6 articles) Tianshi Wang
    4. (6 articles) Tom Pfeiffer
    5. (6 articles) Geert Springeling
    6. (6 articles) Anton F. W. van der Steen
    7. (6 articles) Wolfgang Wieser
    8. (5 articles) Ludwig Maximilian University of Munich
    9. (5 articles) Erasmus University
    10. (3 articles) Evelyn Regar
  3. Popular Articles

  4. Picture Gallery

    Intravascular optical coherence tomography imaging at 3200 frames per second Ultrahigh-speed intravascular optical coherence tomography imaging at 3200 frames per second Feature Of The Week 6/30/13: Ultrafast Intravascular Optical Coherence Tomography Imaging Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography Feature Of The Week 12/06/2015: Heartbeat Optical Coherence Tomography Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy Notal Vision Engages Wasatch Photonics Bringing AI-Enabled Home-Based Optical Coherence Tomography Closer to Market Semiconductor Lasers and Diode-based Light Sources for Biophotonics (Textbook) Inside the “Razor Effect”: Lessons From Optical Coherence Tomography—What Does Angiography Hide? Imaging the Human Prostate Gland Using 1-μm-Resolution Optical Coherence Tomography In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice Recognition of calcified neoatherosclerosis