1. Articles from Leopold Schmetterer

    1-24 of 50 1 2 »
    1. Cutaneous optical coherence tomography for longitudinal volumetric assessment of intradermal volumes in a mouse model

      Cutaneous optical coherence tomography for longitudinal volumetric assessment of intradermal volumes in a mouse model

      Clinical evaluation of skin lesions requires precise and reproducible technologies for their qualitative and quantitative assessment. In this study, we investigate the applicability of a custom-built dermatologic OCT system for longitudinal assessment of intradermal volumes in a mouse model. The OCT, based on an akinetic swept laser working at 1310 nm was employed for visualization and quantification of intradermal deposits of three different hyaluronic acid-based hydrogel formulations – one commercial and two test substances. Hydrogels were applied in 22 BALB/c mice, and measurements were performed over a six-month time period. All hydrogels increased in volume within the first weeks and ...

      Read Full Article
    2. Towards Label-Free 3D Segmentation of Optical Coherence Tomography Images of the Optic Nerve Head Using Deep Learning

      Towards Label-Free 3D Segmentation of Optical Coherence Tomography Images of the Optic Nerve Head Using Deep Learning

      Since the introduction of optical coherence tomography (OCT), it has been possible to study the complex 3D morphological changes of the optic nerve head (ONH) tissues that occur along with the progression of glaucoma. Although several deep learning (DL) techniques have been recently proposed for the automated extraction (segmentation) and quantification of these morphological changes, the device-specific nature and the difficulty in preparing manual segmentations (training data) limit their clinical adoption. With several new manufacturers and next-generation OCT devices entering the market, the complexity in deploying DL algorithms clinically is only increasing. To address this, we propose a DLbased 3D ...

      Read Full Article
    3. Changes in Retinal Blood Flow in Response to an Experimental Increase in IOP in Healthy Participants as Assessed With Doppler Optical Coherence Tomography

      Changes in Retinal Blood Flow in Response to an Experimental Increase in IOP in Healthy Participants as Assessed With Doppler Optical Coherence Tomography

      Purpose : Blood flow autoregulation is an intrinsic mechanism of the healthy retinal vasculature to keep blood flow constant when ocular perfusion pressure (OPP) is changed. In the present study, we set out to investigate retinal blood flow in response to an experimental decrease in OPP in healthy participants using Doppler optical coherence tomography. Methods : Fifteen healthy participants aged between 22 and 31 years (mean, 27 ± 3 years) were included in the present open study. IOP was increased stepwise via the suction cup method to induce a decrease in OPP. Retinal blood flow in arteries and veins was assessed using a ...

      Read Full Article
    4. Deep learning segmentation for optical coherence tomography measurements of the lower tear meniscus

      Deep learning segmentation for optical coherence tomography measurements of the lower tear meniscus

      The tear meniscus contains most of the tear fluid and therefore is a good indicator for the state of the tear film. Previously, we used a custom-built optical coherence tomography (OCT) system to study the lower tear meniscus by automatically segmenting the image data with a thresholding-based segmentation algorithm (TBSA). In this report, we investigate whether the results of this image segmentation algorithm are suitable to train a neural network in order to obtain similar or better segmentation results with shorter processing times. Considering the class imbalance problem, we compare two approaches, one directly segmenting the tear meniscus (DSA), the ...

      Read Full Article
    5. Quantitative Microvascular Analysis With Wide-Field Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy

      Quantitative Microvascular Analysis With Wide-Field Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy

      Importance Wide-field optical coherence tomographic angiography (OCTA) may provide insights to peripheral capillary dropout in eyes with diabetic retinopathy (DR). Objective To describe the diagnostic performance of wide-field OCTA with and without large vessel removal for assessment of DR in persons with diabetes. Design, Setting, and Participants This case-control study was performed from April 26, 2018, to April 8, 2019, at a single tertiary eye center in Singapore. Case patients were those with type 2 diabetes for more than 5 years and bilateral DR diagnosed by fundus imaging; control participants included those with no self-reported history of diabetes, a fasting ...

      Read Full Article
    6. Beyond Fourier transform: break the axial resolution limit in optical coherence tomography

      Beyond Fourier transform: break the axial resolution limit in optical coherence tomography

      Optical coherence tomography (OCT) is a volumetric imaging modality that empowers the clinicians and scientists to noninvasively visualize and examine the microscopic cross-sectional architectures of biological samples. By taking advantages of the coherence gating, OCT could achieve micrometer-level axial sectioning with high sensitivity. In the past decade, substantial efforts have been made to push the axial resolution of Fourier-domain OCT (FD-OCT) further into the sub-micron regime via physically extending the system’s spectral bandwidth. Here, we would like to offer a new perspective on this problem. We argue that the coupling between the axial resolution and the spectral bandwidth in ...

      Read Full Article
    7. Optical Coherence Tomography Angiography Imaging to monitor Anti-VEGF treatment of Corneal Vascularization in a Rabbit Mode

      Optical Coherence Tomography Angiography Imaging to monitor Anti-VEGF treatment of Corneal Vascularization in a Rabbit Mode

      Optical coherence tomography angiography (OCTA) is a well-established non-invasive retinal vascular imaging technique. It has been recently adapted to image the anterior segment and has shown good potential to image corneal vascularisation. The purpose of the study is to evaluate the usefulness of OCTA to monitor regression of corneal vessels following anti-VEGF (vascular endothelial growth factor) treatment using a previously established corneal vascularisation rabbit model. The regression of vessels following the treatment with aflibercept and ranibizumab anti-VEGFs using both topical instillation and sub-conjunctival injection was quantified using OCTA and compared with ICGA (indocyanine green angiography). Overall vessel density measurements using ...

      Read Full Article
    8. Optical coherence tomography angiography in diabetic retinopathy: a review of current applications

      Optical coherence tomography angiography in diabetic retinopathy: a review of current applications

      Background Diabetic retinopathy (DR) is a leading cause of vision loss in adults. Currently, the standard imaging technique to monitor and prognosticate DR and diabetic maculopathy is dye-based angiography. With the introduction of optical coherence tomography angiography (OCTA), it may serve as a potential rapid, non-invasive imaging modality as an adjunct. Main text Recent studies on the role of OCTA in DR include the use of vascular parameters e.g., vessel density, intercapillary spacing, vessel diameter index, length of vessels based on skeletonised OCTA, the total length of vessels, vascular architecture and area of the foveal avascular zone. These quantitative ...

      Read Full Article
    9. DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images

      DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images

      Purpose: To remove retinal shadows from optical coherence tomography (OCT) images of the optic nerve head (ONH). Methods: 2328 OCT images acquired through the center of the ONH using a Spectralis OCT machine for both eyes of 13 subjects were used to train a generative adversarial network (GAN) using a custom loss function.Image quality was assessed qualitatively (for artifacts) and quantitatively using the intralayer contrast € a measure of shadow visibility ranging from 0 (shadow-free) to 1 (strong shadow) and compared to compensated images. Œis was computed in the Retinal Nerve Fiber Layer (RNFL), the Inner Plexiform Layer (IPL), the ...

      Read Full Article
    10. Optical coherence tomography angiography for the assessment of choroidal vasculature in high myopia

      Optical coherence tomography angiography for the assessment of choroidal vasculature in high myopia

      Aims To assess specific layers of the choroid in highly myopic young adults and to examine their associations with levels of myopia. Methods We recruited 51 young myopes (n=91 eyes) from the Singapore Cohort of Risk Factors for Myopia cohort. We performed standardised optical coherence tomography (OCT) and OCT angiography imaging and developed a novel segmentation technique assessing choroidal layers’ thickness (overall choroidal thickness (CT), medium-vessel choroidal layer (MVCL) thickness, large-vessel choroidal layer (LVCL)) and vasculature (choroidal vessel density (%), choroidal branch area (CBA, %) and mean choroidal vessel width (MCVW, mm)). Results We found that eyes with extreme myopia (EM ...

      Read Full Article
    11. A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head

      A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head

      Optical coherence tomography (OCT) has become an established clinical routine for the in vivo imaging of the optic nerve head (ONH) tissues, that is crucial in the diagnosis and management of various ocular and neuro-ocular pathologies. However, the presence of speckle noise affects the quality of OCT images and its interpretation. Although recent frame-averaging techniques have shown to enhance OCT image quality, they require longer scanning durations, resulting in patient discomfort. Using a custom deep learning network trained with 2,328 ‘clean B-scans’ (multi-frame B-scans; signal averaged), and their corresponding ‘noisy B-scans’ (clean B-scans + Gaussian noise), we were able to ...

      Read Full Article
    12. Comparison of optical coherence tomography and high frequency ultrasound imaging in mice for the assessment of skin morphology and intradermal volumes

      Comparison of optical coherence tomography and high frequency ultrasound imaging in mice for the assessment of skin morphology and intradermal volumes

      Optical coherence tomography (OCT) and high-frequency ultrasound (HFUS), two established imaging modalities in the field of dermatology, were evaluated and compared regarding their applicability for visualization of skin tissue morphology and quantification of murine intradermal structures. The accuracy and reproducibility of both methods were assessed ex vivo and in vivo using a standardized model for intradermal volumes based on injected soft tissue fillers. OCT revealed greater detail in skin morphology, allowing for detection of single layers due to the superior resolution. Volumetric data measured by OCT (7.9 ± 0.3 μl) and HFUS (7.7 ± 0.5 μl) were in ...

      Read Full Article
    13. Light-induced changes of the subretinal space of the temporal retina observed via optical coherence tomography

      Light-induced changes of the subretinal space of the temporal retina observed via optical coherence tomography

      Photoreceptor function is impaired in many retinal diseases like age-related macular degeneration. Currently, assessment of the photoreceptor function for the early diagnosis and monitoring of these diseases is either subjective, as in visual field testing, requires contact with the eye, like in electroretinography, or relies on research prototypes with acquisition speeds unattained by conventional imaging systems. We developed an objective, noncontact method to monitor photoreceptor function using a standard optical coherence tomography system. This method can be used with various white light sources for stimulation. The technique was applied in five volunteers and detected a decrease of volume of the ...

      Read Full Article
    14. Characterization of dry eye disease in a mouse model by optical coherence tomography and fluorescein staining

      Characterization of dry eye disease in a mouse model by optical coherence tomography and fluorescein staining

      A custom-built ultrahigh-resolution optical coherence tomography (UHR-OCT) system and fluorescein staining were employed for investigation of a scopolamine induced dry eye mouse model. Acquired data was used to evaluate common and complementary findings of the two modalities. Central corneal thickness as measured by UHR-OCT increased significantly over the study period of 24 hours, from 89.0 ± 3.57 µm to 92.2 ± 4.07 µm. Both techniques were able to show corneal lesions with a large range of severity. Localized fluorescein staining was detected in 5% and diffuse staining in 45% of cases where no epithelial damage was visible with ...

      Read Full Article
    15. Compensation of retinal nerve fibre layer thickness as assessed using optical coherence tomography based on anatomical confounders

      Compensation of retinal nerve fibre layer thickness as assessed using optical coherence tomography based on anatomical confounders

      Background/Aims To compensate the retinal nerve fibre layer (RNFL) thickness assessed by spectral-domain optical coherence tomography (SD-OCT) for anatomical confounders. Methods The Singapore Epidemiology of Eye Diseases is a population-based study, where 2698 eyes (1076 Chinese, 704 Malays and 918 Indians) with high-quality SD-OCT images from individuals without eye diseases were identified. Optic disc and macular cube scans were registered to determine the distance between fovea and optic disc centres (fovea distance) and their respective angle (fovea angle). Retinal vessels were segmented in the projection images and used to calculate the circumpapillary retinal vessel density profile. Compensated RNFL thickness ...

      Read Full Article
    16. Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography

      Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography

      Many different parameters exist for the investigation of tear film dynamics. We present a new tear meniscus segmentation algorithm which automatically extracts tear meniscus area (TMA), height (TMH), depth (TMD) and radius (TMR) from UHR-OCT measurements and apply it to a data set including repeated measurements from ten healthy subjects. Mean values and standard deviations are 0.0174 ± 0.007 mm 2 , 0.272 ± 0.069 mm, 0.191 ± 0.049 mm and 0.309 ± 0.123 mm for TMA, TMH, TMD and TMR, respectively. A significant correlation was found between all respective tear meniscus parameter pairs (all p < 0 ...

      Read Full Article
    17. Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension

      Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension

      We investigated the characteristics of the choriocapillaris flow voids using optical coherence tomography angiography (OCTA) in 85 patients (164 eyes) with hypertension (mean ± SD age, 56 ± 11 years; 45% women; 20% poorly controlled BP; 16% diabetes) who are without ocular diseases and determined possible correlations with systemic vascular risk factors. Data on 24-hour ambulatory blood pressure (BP), serum creatinine, and urine microalbumin/creatinine ratio (MCR) were collected. Estimated glomerular filtration rate (eGFR) was calculated based on CKD-EPI Creatinine Equation. OCTA imaging (6 × 6 mm scans; AngioVue) with quantitative microvascular analysis of the choriocapillaris was performed. Linear regression was used to ...

      Read Full Article
    18. Ultrahigh‐resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing

      Ultrahigh‐resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing

      Purpose To employ ultrahigh‐resolution (UHR) optical coherence tomography (OCT) for investigation of the early wound healing process in corneal epithelium. Methods A custom‐built UHR‐OCT system assessed epithelial healing in human keratoconic cornea after epi‐off crosslinking (CXL) procedure and a wound healing model in rabbits with iatrogenic corneal injury. 3D OCT data sets enhanced obtaining epithelial thickness maps and evaluation of reepithelization stage. Accompanying changes in deeper corneal microarchitecture were analysed. Results The mean central corneal thickness in 40 eyes with keratoconus at baseline was 482.7 ± 38.2 μ m, while mean central epithelial thickness (CET) was ...

      Read Full Article
    19. Optical coherence tomography angiography for the anterior segment

      Optical coherence tomography angiography for the anterior segment

      Optical coherence tomography angiography (OCTA) is a rapid and non-invasive technique for imaging vasculature in the eye. As OCTA can produce high-resolution cross-sectional images and allow depth-resolved analysis for accurate localization of pathology of interest, it has become a promising method for anterior segment imaging. Furthermore, OCTA offers a more patient-friendly alternative to the conventional invasive dye-based fluorescent angiography. However, conventional OCTA systems are typically designed and optimized for the posterior segment of the eye, and thus using OCTA for anterior segment imaging can present several difficulties and limitations. In this review, we summarized the recent developments and clinical applications ...

      Read Full Article
    20. Vessel density and En-face segmentation of optical coherence tomography angiography to analyse corneal vascularisation in an animal model

      Vessel density and En-face segmentation of optical coherence tomography angiography to analyse corneal vascularisation in an animal model

      Background Optical coherence tomography angiography (OCTA) is a novel non-invasive angiography technology that has recently been extensively studied for its utility in anterior segment imaging. In this study, we compared a split-spectrum amplitude decorrelation angiography (SSADA) OCTA and an optical micro-angiography (OMAG SD) OCTA system to current angiographic technique, indocyanine green angiography (ICGA), to assess corneal vascularisation in an animal model. Methods We imaged 16 rabbits, (one eye per animal) with corneal vascularisation using SSADA OCTA (AngioVue; Optovue Inc., USA), OMAG OCTA (Angioscan; RS-3000 Nidek Co. Ltd., Japan) and ICGA in the same region of interest of the cornea at ...

      Read Full Article
    21. Imaging in myopia: potential biomarkers, current challenges and future developments

      Imaging in myopia: potential biomarkers, current challenges and future developments

      Myopia is rapidly increasing in Asia and around the world, while it is recognised that complications from high myopia may cause significant visual impairment. Thus, imaging the myopic eye is important for the diagnosis of sight-threatening complications, monitoring of disease progression and evaluation of treatments. For example, recent advances in high-resolution imaging using optical coherence tomography may delineate early myopic macula pathology, optical coherence tomography angiography may aid early choroidal neovascularisation detection, while multimodal imaging is important for monitoring treatment response. However, imaging the eye with high myopia accurately has its challenges and limitations, which are important for clinicians to ...

      Read Full Article
    22. Quantitative analysis of choriocapillaris in non-human primates using swept-source optical coherence tomography angiography (SS-OCTA)

      Quantitative analysis of choriocapillaris in non-human primates using swept-source optical coherence tomography angiography (SS-OCTA)

      The choriocapillaris is a unique vascular plexus located posterior to the retinal pigment epithelium. In recent years, there is an increasing interest in the examination of the interrelationship between the choriocapillaris and eye diseases. We used several techniques to study choroidal perfusion, including laser Doppler flowmetry, laser speckle flowgraphy, and optical coherence tomography angiography (OCTA), but with the latter no standardized algorithm for quantitative analysis has been provided. We analyzed different algorithms to quantify flow voids in non-human primates that can be easily implemented into clinical research. In-vivo, high-resolution images of the non-human primate choriocapillaris were acquired with a swept-source ...

      Read Full Article
    1-24 of 50 1 2 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (36 articles) Medical University of Vienna
    2. (22 articles) Singapore Eye Research Institute
    3. (16 articles) Nanyang Technological University
    4. (11 articles) Rainer A. Leitgeb
    5. (9 articles) National University of Singapore
    6. (5 articles) Angelika Unterhuber
    7. (4 articles) Duke University
    8. (4 articles) Jodhbir S. Mehta
    9. (4 articles) Tin Aung
    10. (4 articles) Christoph K. Hitzenberger
    11. (1 articles) University College London
    12. (1 articles) University of North Carolina
    13. (1 articles) Bern University Hospital
    14. (1 articles) Nieves Gonzalo
    15. (1 articles) Fernando Alfonso
    16. (1 articles) Santiago Jiménez-Valero
    17. (1 articles) Amy L. Oldenburg
  3. Popular Articles

  4. Picture Gallery

    Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels Measurement of Absolute Blood Flow Velocity and Blood Flow in the Human Retina by Dual-beam Bidirectional Doppler Fourier-Domain Optical Coherence Tomography Dove prism based rotating dual beam bidirectional Doppler OCT Measurement of Tear Film Thickness Using Ultrahigh Resolution Optical Coherence Tomography Angle independent flow assessment with bidirectional Doppler optical coherence tomography Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes Doppler Optical Coherence Tomography Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins Influence of neoatherosclerosis on prognosis and treatment response in patients with in-stent restenosis Tracking the invasion of breast cancer cells in paper-based 3D cultures by OCT motility analysis Coronary Artery Occlusion Caused by Intramural Hematoma Due to In-Stent Dissection