1. Articles from Yoshiaki Yasuno

    1-24 of 157 1 2 3 4 5 6 7 »
    1. Extending field-of-view of retinal imaging by optical coherence tomography using convolutional Lissajous and slow scan patterns

      Extending field-of-view of retinal imaging by optical coherence tomography using convolutional Lissajous and slow scan patterns

      Optical coherence tomography (OCT) is a high-speed non-invasive cross-sectional imaging technique. Although its imaging speed is high, three-dimensional high-spatial-sampling-density imaging of in vivo tissues with a wide field-of-view (FOV) is challenging. We employed convolved Lissajous and slow circular scanning patterns to extend the FOV of retinal OCT imaging with a 1-µm, 100-kHz-sweep-rate swept-source OCT prototype system. Displacements of sampling points due to eye movements are corrected by post-processing based on a Lissajous scan. Wide FOV three-dimensional retinal imaging with high sampling density and motion correction is achieved. Three-dimensional structures obtained using repeated imaging sessions of a healthy volunteer and ...

      Read Full Article
    2. Birefringence-derived scleral artifacts in optical coherence tomography images of eyes with pathologic myopia

      Birefringence-derived scleral artifacts in optical coherence tomography images of eyes with pathologic myopia

      We investigated birefringence-derived scleral artifacts in optical coherence tomography (OCT) images of eyes with pathologic myopia. This study included 76 eyes of 42 patients with pathologic myopia. Five sets of OCT B-scan images of the macula were obtained using commercial swept-source OCT. A dataset of prototype swept-source polarization-diversity OCT images was used to identify polarization-dependent OCT images (i.e., complex averaging of OCT signals from two polarization channels) and polarization-independent OCT images (i.e., intensity averaging of two OCT signals). Polarization-dependent OCT images and commercial OCT images were assessed for the presence of birefringence-derived artifacts by comparison with polarization-independent OCT ...

      Read Full Article
    3. Longitudinal investigation of a xenograft tumor zebrafish model using polarization-sensitive optical coherence tomography

      Longitudinal investigation of a xenograft tumor zebrafish model using polarization-sensitive optical coherence tomography

      Breast cancer is a leading cause of death in female patients worldwide. Further research is needed to get a deeper insight into the mechanisms involved in the development of this devastating disease and to find new therapy strategies. The zebrafish is an established animal model, especially in the field of oncology, which has shown to be a promising candidate for pre-clinical research and precision-based medicine. To investigate cancer growth in vivo in zebrafish, one approach is to explore xenograft tumor models. In this article, we present the investigation of a juvenile xenograft zebrafish model using a Jones matrix optical coherence ...

      Read Full Article
    4. Label-free metabolic imaging of non-alcoholic-fatty-liver-disease (NAFLD) liver by volumetric dynamic optical coherence tomography

      Label-free metabolic imaging of non-alcoholic-fatty-liver-disease (NAFLD) liver by volumetric dynamic optical coherence tomography

      Label-free metabolic imaging of non-alcoholic fatty liver disease (NAFLD) mouse liver is demonstrated ex vivo by dynamic optical coherence tomography (OCT). The NAFLD mouse is a methionine choline-deficient (MCD)-diet model, and two mice fed the MCD diet for 1 and 2 weeks are involved in addition to a normal-diet mouse. The dynamic OCT is based on repeating raster scan and logarithmic intensity variance (LIV) analysis that enables volumetric metabolic imaging with a standard-speed (50,000 A-lines/s) OCT system. Metabolic domains associated with lipid droplet accumulation and inflammation are clearly visualized three-dimensionally. Particularly, the normal-diet liver exhibits highly metabolic ...

      Read Full Article
    5. Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography

      Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography

      The zebrafish is a valuable vertebrate animal model in pre-clinical cancer research. A Jones matrix optical coherence tomography (JM-OCT) prototype operating at 1310 nm and an intensity-based spectral-domain OCT setup at 840 nm were utilized to investigate adult wildtype and a tumor-developing zebrafish model. Various anatomical features were characterized based on their inherent scattering and polarization signature. A motorized translation stage in combination with the JM-OCT prototype enabled large field-of-view imaging to investigate adult zebrafish in a non-destructive way. The diseased animals exhibited tumor-related abnormalities in the brain and near the eye region. The scatter intensity, the attenuation coefficients and ...

      Read Full Article
    6. Evaluation of choroidal melanin-containing tissue in healthy Japanese subjects by polarization-sensitive optical coherence tomography

      Evaluation of choroidal melanin-containing tissue in healthy Japanese subjects by polarization-sensitive optical coherence tomography

      In this study, the choroidal melanin content in healthy eyes was evaluated with polarization-sensitive optical coherence tomography (PS-OCT). We evaluated 105 healthy eyes of 105 Japanese subjects. The mean thickness of melanin-containing tissue in the choroid (thickness of MeCh) and the choroidal melanin occupancy rate within a 5-mm circular region from the foveal center were calculated using the degree of polarization uniformity obtained by PS-OCT and compared with the choroidal thickness, patient age, and axial length. To evaluate regional variations, the 5-mm circular region was divided into a center area and an outer ring area, and the outer ring area ...

      Read Full Article
    7. Objective evaluation of choroidal melanin loss in patients with Vogt–Koyanagi–Harada disease using polarization-sensitive optical coherence tomography

      Objective evaluation of choroidal melanin loss in patients with Vogt–Koyanagi–Harada disease using polarization-sensitive optical coherence tomography

      In this study, sunset glow fundus was evaluated in patients with Vogt-Koyanagi-Harada (VKH) disease using polarization-sensitive optical coherence tomography (PS-OCT). We evaluated 40 VKH eyes (20 patients) and 59 healthy eyes (59 age-matched controls). VKH eyes were divided into three groups according to color fundus images: sunset (17 eyes), potential sunset (13 eyes), and non-sunset (10 eyes). Choroidal melanin thickness (ChMeT) and the choroidal melanin thickness ratio (ChMeTratio) were calculated based on the degree of polarization uniformity from PS-OCT. ChMeT was significantly lower in sunset eyes than in non-sunset or control eyes (P = 0.003). The ChMeTratios of sunset or ...

      Read Full Article
    8. Multicontrast investigation of in vivo wildtype zebrafish in three development stages using polarization-sensitive optical coherence tomography

      Multicontrast investigation of in vivo wildtype zebrafish in three development stages using polarization-sensitive optical coherence tomography

      Significance: The scattering and polarization characteristics of various organs of in vivo wildtype zebrafish in three development stages were investigated using a non-destructive and label-free approach. The presented results showed a promising first step for the usability of Jones-matrix optical coherence tomography (JM-OCT) in zebrafish-based research. Aim: We aim to visualize and quantify the scatter and polarization signatures of various zebrafish organs for larvae, juvenile, and young adult animals in vivo in a non-invasive and label-free way. Approach: A custom-built polarization-sensitive JM-OCT setup in combination with a motorized translation stage was utilized to investigate live zebrafish. Depth-resolved scattering (intensity and ...

      Read Full Article
    9. Deep convolutional neural network-based scatterer density and resolution estimators in optical coherence tomography

      Deep convolutional neural network-based scatterer density and resolution estimators in optical coherence tomography

      We present deep convolutional neural network (DCNN)-based estimators of the tissue scatterer density (SD), lateral and axial resolutions, signal-to-noise ratio (SNR), and effective number of scatterers (ENS, the number of scatterers within a resolution volume). The estimators analyze the speckle pattern of an optical coherence tomography (OCT) image in estimating these parameters. The DCNN is trained by a large number (1,280,000) of image patches that are fully numerically generated in OCT imaging simulation. Numerical and experimental validations were performed. The numerical validation shows good estimation accuracy as the root mean square errors were 0.23%, 3.65 ...

      Read Full Article
    10. Three-dimensional dynamics optical coherence tomography for tumor spheroid evaluation

      Three-dimensional dynamics optical coherence tomography for tumor spheroid evaluation

      We present a completely label-free three-dimensional (3D) optical coherence tomography (OCT)-based tissue dynamics imaging method for visualization and quantification of the metabolic and necrotic activities of tumor spheroid. Our method is based on a custom 3D scanning protocol that is designed to capture volumetric tissue dynamics tomography images only in a few tens of seconds. The method was applied to the evaluation of a tumor spheroid. The time-course viability alteration and anti-cancer drug response of the spheroid were visualized qualitatively and analyzed quantitatively. The similarity between the OCT-based dynamics images and fluorescence microscope images was also demonstrated.

      Read Full Article
    11. Label-free functional and structural imaging of liver microvascular complex in mice by Jones matrix optical coherence tomography

      Label-free functional and structural imaging of liver microvascular complex in mice by Jones matrix optical coherence tomography

      We demonstrate label-free imaging of the functional and structural properties of microvascular complex in mice liver. The imaging was performed by a custom-built Jones-matrix based polarization sensitive optical coherence tomography (JM-OCT), which is capable of measuring tissue's attenuation coefficient, birefringence, and tiny tissue dynamics. Two longitudinal studies comprising a healthy liver and an early fibrotic liver model were performed. In the healthy liver, we observed distinctive high dynamics beneath the vessel at the initial time point (0 h) and reappearance of high dynamics at 32-h time point. In the early fibrotic liver model, we observed high dynamics signal that ...

      Read Full Article
    12. Computational multi-directional optical coherence tomography for visualizing the microstructural directionality of the tissue

      Computational multi-directional optical coherence tomography for visualizing the microstructural directionality of the tissue

      We demonstrate computational multi-directional optical coherence tomography (OCT) to assess the directional property of tissue microstructure. This method is the combination of phase-sensitive volumetric OCT imaging and post-signal processing. The latter comprises of two steps. The first step is an intensity-directional analysis, which determines the dominant en face fiber orientations. The second step is the phase-directional imaging, which reveals the sub-resolution depth-orientation of the microstructure. The feasibility of the method was tested by assessing muscle and tendon samples. Stripe patterns with several sizes were visualized in the phase-directional images. In order to interpret these images, the muscle and tendon structures ...

      Read Full Article
    13. Effect of A-scan rate and interscan interval on optical coherence angiography

      Effect of A-scan rate and interscan interval on optical coherence angiography

      Optical coherence tomography angiography (OCTA) can provide rapid, volumetric, and noninvasive imaging of tissue microvasculature without the requirement of exogenous contrast agents. To investigate how A-scan rate and interscan time affected the contrast and dynamic range of OCTA, we developed a 1.06-µm swept-source OCT system enabling 100-kHz or 200-kHz OCT using two light sources. After system settings were carefully adjusted, almost the same detection sensitivity was achieved between the 100-kHz and 200-kHz modalities. OCTA of ear skin was performed on five mice. We used the variable interscan time analysis algorithm (VISTA) and the designated scanning protocol with OCTA ...

      Read Full Article
    14. Accurately motion-corrected Lissajous OCT with multi-type image registration

      Accurately motion-corrected Lissajous OCT with multi-type image registration

      Passive motion correction methods for optical coherence tomography (OCT) use image registration to estimate eye movements. To improve motion correction, a multi-image cross-correlation that employs spatial features in different image types is introduced. Lateral motion correction using en face OCT and OCT-A projections on Lissajous-scanned OCT data is applied. Motion correction using OCT-A projection of whole depth and OCT amplitude, OCT logarithmic intensity, and OCT maximum intensity projections were evaluated in retinal imaging with 76 patients. The proposed method was compared with motion correction using OCT-A projection of whole depth. The comparison shows improvements in the image quality of motion-corrected ...

      Read Full Article
    15. Optical coherence tomography-based tissue dynamics imaging for longitudinal and drug response evaluation of tumor spheroids

      Optical coherence tomography-based tissue dynamics imaging for longitudinal and drug response evaluation of tumor spheroids

      We present optical coherence tomography (OCT)-based tissue dynamics imaging method to visualize and quantify tissue dynamics such as subcellular motion based on statistical analysis of rapid-time-sequence OCT signals at the same location. The analyses include logarithmic intensity variance (LIV) method and two types of OCT correlation decay speed analysis (OCDS). LIV is sensitive to the magnitude of the signal fluctuations, while OCDSs including early- and late-OCDS (OCDS e and OCDS l , respectively) are sensitive to the fast and slow tissue dynamics, respectively. These methods were able to visualize and quantify the longitudinal necrotic process of a human breast adenocarcinoma ...

      Read Full Article
    16. Quantitative multi-contrast in vivo mouse imaging with polarization diversity optical coherence tomography and angiography

      Quantitative multi-contrast in vivo mouse imaging with polarization diversity optical coherence tomography and angiography

      Retinal microvasculature and the retinal pigment epithelium (RPE) play vital roles in maintaining the health and metabolic activity of the eye. Visualization of these retina structures is essential for pre-clinical studies of vision-robbing diseases, such as age-related macular degeneration (AMD). We have developed a quantitative multi-contrast polarization diversity OCT and angiography (QMC-PD-OCTA) system for imaging and visualizing pigment in the RPE using degree of polarization uniformity (DOPU), along with flow in the retinal capillaries using OCT angiography (OCTA). An adaptive DOPU averaging kernel was developed to increase quantifiable values from visual data, and QMC en face images permit simultaneous visualization ...

      Read Full Article
    17. Depth‐resolved investigation of multiple optical properties and wrinkle morphology in eye‐corner areas with multi‐contrast Jones matrix optical coherence tomography

      Depth‐resolved investigation of multiple optical properties and wrinkle morphology in eye‐corner areas with multi‐contrast Jones matrix optical coherence tomography

      Background Multi‐contrast Jones matrix optical coherence tomography (JM‐OCT) can provide quantitative depth‐resolved local optical properties by improving the measurement algorithm. Materials and methods We examined the relationship between depth‐resolved local optical properties of eye‐corner skin measured by JM‐OCT and corresponding wrinkle morphology of aged women (n = 21; age range, 71.7 ± 1.7 years). Wrinkle morphology was analyzed by measuring the surface topography of three‐dimensional replicas. The same regions were measured three‐dimensionally by JM‐OCT, and the local optical properties at each depth were computed. Results Birefringence (BR) and mean wrinkle depth ...

      Read Full Article
    18. Depth-resolved investigation of multiple optical properties and wrinkle morphology in eye-corner areas with multi-contrast Jones matrix optical coherence tomography

      Depth-resolved investigation of multiple optical properties and wrinkle morphology in eye-corner areas with multi-contrast Jones matrix optical coherence tomography

      Background: Multi-contrast Jones matrix optical coherence tomography (JM-OCT) can provide quantitative depth-resolved local optical properties by improving the measurement algorithm. Materials and methods: We examined the relationship between depth-resolved local optical properties of eye-corner skin measured by JM-OCT and corresponding wrinkle morphology of aged women (n = 21; age range, 71.7 ± 1.7 years). Wrinkle morphology was analyzed by measuring the surface topography of three-dimensional replicas. The same regions were measured three-dimensionally by JM-OCT, and the local optical properties at each depth were computed. Results: Birefringence (BR) and mean wrinkle depth correlated significantly at a depth of 88.2-138.6 ...

      Read Full Article
    19. Bulk-phase-error correction for phase-sensitive signal processing of optical coherence tomography

      Bulk-phase-error correction for phase-sensitive signal processing of optical coherence tomography

      We present a numerical phase stabilization method for phase-sensitive signal processing of optical coherence tomography (OCT). This method removes the bulk phase error caused by the axial bulk motion of the sample and the environmental perturbation during volumetric acquisition. In this method, the partial derivatives of the phase error are computed along both fast and slow scanning directions, so that the vectorial gradient field of the phase error is given. Then, the phase error is estimated from the vectorial gradient field by a newly developed line integration method; a smart integration path method. The performance of this method was evaluated ...

      Read Full Article
    20. Optical coherence tomography interpreted by diffractive optics: A-scan image formation with wavelength-scale diffraction gratings as samples

      Optical coherence tomography interpreted by diffractive optics: A-scan image formation with wavelength-scale diffraction gratings as samples

      Seeking a detailed investigation of polarization sensitive optical coherence tomography, electromagnetic numerical simulation of optical coherence tomography is carried out assuming deep diffraction gratings, some of which are in the resonance domain, as a sample to be measured. This is an approach from diffractive optics, and its simplification of the problem makes analysis more focused on its fundamental nature. The combination of the two disciplines provides previously unnoticed issues such as detection of a structure that does not exist.

      Read Full Article
    21. Polarization-sensitive optical coherence elastography

      Polarization-sensitive optical coherence elastography

      Polarization-sensitive optical coherence elastography (PS-OCE) is developed for improved tissue discrimination. It integrates Jones matrix-based PS-optical coherence tomography (PS-OCT) with compression OCE. The method simultaneously measures the OCT intensity, attenuation coefficient, birefringence, and microstructural deformation (MSD) induced by tissue compression. Ex vivo porcine aorta and esophagus tissues were investigated by PS-OCE and histological imaging. The tissue properties measured by PS-OCE are shown as cross-sectional images and a three-dimensional (3-D) depth-trajectory plot. In this trajectory plot, the average attenuation coefficient, birefringence, and MSD were computed at each depth, and the trajectory in the depth direction was plotted in a 3-D feature ...

      Read Full Article
    22. Evaluation of Retinal Pigment Epithelium Layer Change in Vogt-Koyanagi-Harada Disease With Multicontrast Optical Coherence Tomography

      Evaluation of Retinal Pigment Epithelium Layer Change in Vogt-Koyanagi-Harada Disease With Multicontrast Optical Coherence Tomography

      Purpose : Clinical evaluation of retinal pigment epithelium (RPE) change is important for the therapeutic management of chronic Vogt-Koyanagi-Harada (VKH) disease. We evaluated long-term change in the RPE layer in VKH disease, using near-infrared (NIR; 817 nm) images and autofluorescence images at 488 nm (short-wavelength [SW]-AF) and 785 nm (NIR-AF), and compared those images with images from multicontrast optical coherence tomography (MC-OCT). MC-OCT is capable of simultaneous measurement of OCT angiography, polarization-sensitive OCT, and standard OCT. Methods : We evaluated 24 eyes of 12 patients with chronic VKH disease. RPE changes were assessed using NIR, NIR-AF, SW-AF, and MC-OCT imaging performed ...

      Read Full Article
    23. Multi-scale and -contrast sensorless adaptive optics optical coherence tomography

      Multi-scale and -contrast sensorless adaptive optics optical coherence tomography

      Background: The roles of the retinal microvasculature and the retinal pigment epithelium (RPE) in maintaining the health and metabolic activity of the retina lend great clinical value to their high-resolution visualization. Methods: By integrating polarization diversity detection (PDD) into multi-scale and -contrast sensorless adaptive optics optical coherence tomography (MSC-SAO-OCT), we have developed a novel multi-contrast SAO OCT system for imaging pigment in the RPE as well as flow in the retinal capillaries using OCT angiography (OCTA). Aberration correction was performed based on the image quality using transmissive deformable optical elements. Results: MSC-SAO-OCTA imaging was performed at multiple fields-of-view (FOVs) with ...

      Read Full Article
    24. Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation

      Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation

      Measurements of the randomness of polarization (RP) obtained using polarization-sensitive optical coherence tomography (PS-OCT) are applied in several applications, and RP is attractive for posterior eye imaging. The addition of RP without retardation requires a minimal extension to standard OCT; therefore, we developed a prototype OCT system with a simplified scheme for RP measurement. A compact polarization-diversity receiver module is the only required hardware extension to a standard OCT system. All components were packed into the retinal scanning head. The degree-of-polarization uniformity and complex-decorrelation based OCT angiography were calculated using noise-corrected algorithms that accounted for the depth-dependent noise power. The ...

      Read Full Article
    1-24 of 157 1 2 3 4 5 6 7 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (151 articles) University of Tsukuba
    2. (27 articles) Tokyo Medical University
    3. (11 articles) University of Oulu
    4. (7 articles) Gwangju Institute of Science and Technology
    5. (5 articles) Medical University of Vienna
    6. (5 articles) Osaka University
    7. (4 articles) University of British Columbia
    8. (4 articles) Tomey Corporation
    9. (2 articles) Simon Fraser University
    10. (2 articles) Oregon Health & Science University
    11. (1 articles) University of Washington
    12. (1 articles) Shanghai Jiao Tong University
    13. (1 articles) RetinAI
    14. (1 articles) Specsavers
  3. Popular Articles

  4. Picture Gallery

    Automated segmentation of the macula by optical coherence tomography Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography Central macular thickness and subfoveal choroidal thickness changes on spectral domain optical coherence tomography after cataract surgery in pediatric population Anterior segment optical coherence tomography characteristics and management of a unique spectrum of foreign bodies in the cornea and anterior chamber Increase in anterior chamber angle depth after topical pilocarpine measured by spectral domain optical coherence tomography: A possible additional indicator for laser peripheral iridotomy in primary angle-closure suspects in an opportunistic set-up Comparison of peripapillary capillary plexus using optical coherence tomography angiography and retinal nerve fibre layer analysis using spectral domain optical coherence tomography in glaucoma patients, glaucoma suspects, and healthy subjects Assessment of Tear Meniscus Dimensions Using Anterior Segment Optical Coherence Tomography in Vitamin D Deficiency in a Pediatric Population Diagnostic ability of superficial vascular density measured by optical coherence tomography angiography to differentiate high myopic eyes from eyes with primary open angle glaucoma Functional features in patients with idiopathic macular hole treatment via OCT angiography RetinAI launches Discovery CORE™: an AI-powered, collaborative platform to accelerate Clinical & Academic Research, & RWE analysis in ophthalmology A moderate dosage of coffee causes acute retinal capillary perfusion decrease in healthy young individuals