1. Articles from Benjamin M. Potsaid

    1-13 of 13
    1. Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source

      Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source

      Endoscopic optical coherence tomography (OCT) instruments are mostly side viewing and rely on at least one proximal scan, thus limiting accuracy of volumetric imaging and en face visualization. Previous forward-viewing OCT devices had limited axial scan speeds. We report a forward-viewing fiber scanning 3D-OCT probe with 900 μm field of view and 5 μm transverse resolution, imaging at 1 MHz axial scan rate in the human gastrointestinal tract. The probe is 3.3 mm diameter and 20 mm rigid length, thus enabling passage through the endoscopic channel. The scanner has 1.8 kHz resonant frequency, and each volumetric acquisition takes ...

      Read Full Article
    2. Volumetric Mapping of Barrett’s Esophagus and Dysplasia With en face Optical Coherence Tomography Tethered Capsule

      Volumetric Mapping of Barrett’s Esophagus and Dysplasia With en face Optical Coherence Tomography Tethered Capsule

      To the Editor: Dysplasia in Barrett’s Esophagus (BE) is patchy ( 1 ) and sometimes missed by random biopsies. Optical coherence tomography (OCT) can image large areas of the esophagus; however, slow imaging speeds in earlier studies limited visualization to cross-sections. Cross-sectional OCT detected high-grade dysplasia with sensitivity / specificity of ~80 % ( 2 , 3 ). Tethered OCT capsules were demonstrated for cross-sectional imaging in unsedated screening to detect BE ( 4 , 5 ). Our group recently developed ultrahigh-speed OCT for en face and angiographic imaging, using micromotor probes in patients ( 6 , 7 ) and large field-of-view tethered capsule devices in swine ( 8 ). Narrow-band imaging (NBI) visualizes ...

      Read Full Article
    3. Method and apparatus for motion correction and image enhancement for optical coherence tomography

      Method and apparatus for motion correction and image enhancement for optical coherence tomography

      Images of an object, such as OCT scans of a human eye, can include distortions and data gaps due to relative motion of the object and the image acquisition device. Methods and systems for correction of such distortions and data gaps are described herein. Motion-corrected data is arrived at by applying three-dimensional transforms to input three-dimensional data sets that represent at least partially overlapping regions of the imaged object. The three dimensional transforms are computed based on an objective function that accounts for similarity between the transformed three-dimensional data sets and the estimated motion of the object relative to an ...

      Read Full Article
    4. Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy (CLE) and narrowband imaging (NBI) have been used to investigate vascular changes as hallmarks of early cancer in the GI tract. However, the limited frame rate and field of view make CLE imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high speed volumetric imaging of subsurface features at near-microscopic resolution, and can image microvasculature without exogenous contrast agents such as fluorescein, which obliterates the image in areas of bleeding, or after biopsies and resections. OCT has been ...

      Read Full Article
    5. Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy1 and narrow band imaging (NBI)2 have been used to investigate vascular changes as hallmarks of early cancer in the gastrointestinal tract. However, the limited frame rate and field of view make confocal laser endomicroscopy imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high-speed volumetric imaging of subsurface features at near-microscopic resolution,3, 4 and can image microvasculature without exogenous contrast agents,5 such as fluorescein, which obliterates the image in areas of bleeding, or after ...

      Read Full Article
    6. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology

      Ultrahigh speed endoscopic optical coherence tomography for gastroenterology

      We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging ...

      Read Full Article
    7. Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature

      Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy 1 and narrow band imaging (NBI) 2 have been used to investigate vascular changes as hallmarks of early cancer in the gastrointestinal tract. However, the limited frame rate and field of view make confocal laser endomicroscopy imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high-speed volumetric imaging of subsurface features at near-microscopic resolution, 3,4 and can image microvasculature without exogenous contrast agents, 5 such as fluorescein, which obliterates the image in areas of bleeding, or after ...

      Read Full Article
    8. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

      Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

      We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in ...

      Read Full Article
    9. Swept source optical coherence microscopy using a 1310 nm VCSEL light source

      Swept source optical coherence microscopy using a 1310 nm VCSEL light source

      We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0 ...

      Read Full Article
    10. Ultrahigh speed endoscopic optical coherence tomography using micro-motor imaging catheter and VCSEL technology

      Ultrahigh speed endoscopic optical coherence tomography using micro-motor imaging catheter and VCSEL technology

      We developed a micro-motor based miniature catheter with an outer diameter of 3mm for ultrahigh speed endoscopic optical coherence tomography (OCT) using vertical cavity surface-emitting laser (VCSEL) at a 1MHz axial scan rate. The micro-motor can rotate a micro-prism at 1,200-72,000rpm (corresponding to 20- 1,200fps) with less than 5V driving voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back for a long distance to acquire three-dimensional (3D) dataset covering a large area on the specimen. VCSEL provides high a-line rate to support ...

      Read Full Article
    11. Method And Apparatus For Motion Correction And Image Enhancement For Optical Coherence Tomography

      Method And Apparatus For Motion Correction And Image Enhancement For Optical Coherence Tomography

      Images of an object, such as OCT scans of a human eye, can include distortions and data gaps due to relative motion of the object and the image acquisition device. Methods and systems for correction of such distortions and data gaps are described herein. Motion-corrected data is arrived at by applying three- dimensional transforms to input three-dimensional data sets that represent at least partially overlapping regions of the imaged object. The three dimensional transforms are computed based on an objective function that accounts for similarity between the transformed three-dimensional data sets and the estimated motion of the object relative to ...

      Read Full Article
    12. Piezoelectric transducer based miniature catheter for ultrahigh speed endoscopic optical coherence tomography

      Piezoelectric transducer based miniature catheter for ultrahigh speed endoscopic optical coherence tomography

      We developed a piezoelectric transducer (PZT) based miniature catheter with an outer diameter of 3 mm for ultrahigh speed endoscopic optical coherence tomography (OCT) using Fourier domain modelocked (FDML) laser at a 480 kHz axial scan rate. The miniaturized PZT bender actuates a fiber to provide high scanning speed. The side-viewing probe can be pulled back for a long distance to acquire three-dimensional (3D) dataset covering a large area on the specimen. Operating with a high speed data acquisition (DAQ) system, OCT imaging with 6.5 mm imaging range, 10 μm axial resolution, 20 μm lateral resolution, and frame rate ...

      Read Full Article
    1-13 of 13
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (13 articles) Massachusetts Institute of Technology
    2. (13 articles) James G. Fujimoto
    3. (13 articles) Benjamin M. Potsaid
    4. (9 articles) Tsung-Han Tsai
    5. (9 articles) Vijay Jayaraman
    6. (9 articles) Thorlabs
    7. (9 articles) Praevium Research
    8. (8 articles) Alex E. Cable
    9. (8 articles) Hiroshi Mashimo
    10. (8 articles) Osman O. Ahsen
  3. Popular Articles

  4. Picture Gallery

    Piezoelectric transducer based miniature catheter for ultrahigh speed endoscopic optical coherence tomography Method And Apparatus For Motion Correction And Image Enhancement For Optical Coherence Tomography Ultrahigh speed endoscopic optical coherence tomography using micro-motor imaging catheter and VCSEL technology Swept source optical coherence microscopy using a 1310 nm VCSEL light source Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter Ultrahigh speed endoscopic optical coherence tomography for gastroenterology Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature Volumetric Mapping of Barrett’s Esophagus and Dysplasia With en face Optical Coherence Tomography Tethered Capsule Real-time and non-invasive measurements of cell mechanical behaviour with optical coherence phase microscopy The Future of Imaging in Detecting Glaucoma Progression