Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets

We developed machine learning methods to identify fibrolipidic and fibrocalcific A-lines in intravascular optical coherence tomography (IVOCT) images using a comprehensive set of handcrafted features. We incorporated features developed in previous studies (e.g., optical attenuation and A-line peaks). In addition, we included vascular lumen morphology and three-dimensional (3-D) digital edge and texture features. Classification methods were developed using expansive datasets (∼7000 images), consisting of both clinical in-vivo images and an ex-vivo dataset, which was validated using 3-D cryo-imaging/histology. Conditional random field was used to perform 3-D classification noise cleaning of classification results. We tested various multiclass approaches, classifiers ...