Differentiation of primary central nervous system lymphoma from glioblastoma using optical coherence tomography based on attention ResNet

Significance: Differentiation of primary central nervous system lymphoma from glioblastoma is clinically crucial to minimize the risk of treatments, but current imaging modalities often misclassify glioblastoma and lymphoma. Therefore, there is a need for methods to achieve high differentiation power intraoperatively. Aim: The aim is to develop and corroborate a method of classifying normal brain tissue, glioblastoma, and lymphoma using optical coherence tomography with deep learning algorithm in an ex vivo experimental design. Approach: We collected tumor specimens from ordinal surgical operations and measured them with optical coherence tomography. An attention ResNet deep learning model was utilized to differentiate glioblastoma ...