1. Articles from Michiko Watanabe

    1-16 of 16
    1. Prenatal ethanol exposure impairs the conduction delay at the atrioventricular junction in the looping heart

      Prenatal ethanol exposure impairs the conduction delay at the atrioventricular junction in the looping heart

      The etiology of ethanol-related congenital heart defects has been the focus of much study, but most research has concentrated on cellular and molecular mechanisms. We have shown with optical coherence tomography (OCT) that ethanol exposure led to increased retrograde flow and smaller atrioventricular (AV) cushions compared to controls. Since AV cushions play a role in patterning the conduction delay at the atrioventricular junction (AVJ), this study aims to investigate whether ethanol exposure alters the AVJ conduction in early looping hearts and whether this alteration is related to the decreased cushion size. Quail embryos were exposed to a single dose of ...

      Read Full Article
    2. Folic acid prevents functional and structural heart defects induced by prenatal ethanol exposur

      Folic acid prevents functional and structural heart defects induced by prenatal ethanol exposur

      Increased regurgitant blood flow has been linked to endocardial cushion defects and resultant congenital heart diseases (CHDs). Prenatal alcohol exposure (PAE) has been shown to alter early blood flow resulting in abnormal endocardial cushions and CHDs. Compounds, including folic acid (FA), mitigate PAE effects and prevent CHDs, but few studies have assessed their effects on blood flow. We modeled binge drinking in quail embryos at gastrulation. Embryos were exposed to ethanol alone, FA (3.2 μg/egg) alone, and the two simultaneously. We quantified in cardiac looping stages (equivalent to 4 weeks of human gestation) regurgitant blood flow with Doppler ...

      Read Full Article
    3. SLIME: robust, high-speed 3D microvascular mapping

      SLIME: robust, high-speed 3D microvascular mapping

      Three dimensional (3D) microvascular imaging of cubic millimeter to centimeter size volumes often requires much time and expensive instruments. By combining optical clearing with a novel scatter-based optical coherence tomography (OCT) contrast agent, we have greatly extended OCT imaging depth in excised tissues while maintaining a simple and low cost approach that does not require in-depth OCT knowledge. The new method enables fast 3D microvascular mapping in large tissue volumes, providing a promising tool for investigating organ level microvascular abnormalities in large cohorts.

      Read Full Article
    4. Using optical coherence tomography to detect disturbances in coronary microvascular in a model of fetal alcohol syndrome

      Using optical coherence tomography to detect disturbances in coronary microvascular in a model of fetal alcohol syndrome

      Congenital coronary anomalies can result in severe consequences such as arrhythmias and sudden death. However, the etiology of abnormal embryonic coronary microvasculature development is understudied. Using a novel contrast-agent-based optical coherence tomography (OCT) technique, scatter labeled imaging of microvasculature in excised tissue (SLIME), we compared diseased and normal embryonic quail coronary microvasculature in 3D. Congenital heart defects associated with fetal alcohol syndrome (FAS) were induced in a quail model by injecting 40 uL of 50% ethanol solution into eggs during gastrulation. These and saline-injected quail eggs were incubated until stage 36. SLIME contrast agent was perfused through the aortas of ...

      Read Full Article
    5. Feature Of The Week 02/22/15: Case Western Reserve University Demostrates Using OCT to Rapidly Phenotype and Quantify Congenital Heart Defects Associated with Prenatal Alcohol Exposure

      Feature Of The Week 02/22/15:  Case Western Reserve University Demostrates Using OCT to Rapidly Phenotype and Quantify Congenital Heart Defects Associated with Prenatal Alcohol Exposure

      The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of Fetal Alcohol Syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum ...

      Read Full Article
    6. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure

      Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure

      Background : The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of Fetal Alcohol Syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. Results : The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels ...

      Read Full Article
    7. Capturing structure and function in an embryonic heart with biophotonic tools

      Capturing structure and function in an embryonic heart with biophotonic tools

      Disturbed cardiac function at an early stage of development has been shown to correlate with cellular/molecular, structural as well as functional cardiac anomalies at later stages culminating in the congenital heart defects (CHDs) that present at birth. While our knowledge of cellular and molecular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still in an early phase. One reason for the scanty information in this area is that the tools to study early cardiac function are limited. Recently developed and adapted biophotonic tools may overcome some of the ...

      Read Full Article
    8. Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography

      Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography

      Optical mapping (OM) of cardiac electrical activity conventionally collects information from a three-dimensional (3-D) surface as a two-dimensional (2-D) projection map. When applied to measurements of the embryonic heart, this method ignores the substantial and complex curvature of the heart surface, resulting in significant errors when calculating conduction velocity, an important electrophysiological parameter. Optical coherence tomography (OCT) is capable of imaging the 3-D structure of the embryonic heart and accurately characterizing the surface topology. We demonstrate an integrated OCT/OM imaging system capable of simultaneous conduction mapping and 3-D structural imaging. From these multimodal data, we obtained 3-D activation maps ...

      Read Full Article
    9. Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?

      Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?

      Alcohol-induced congenital heart defects (CHDs) are frequently among the most life-threatening and require surgical correction in newborns. The etiology of these defects, collectively known as Fetal Alcohol Syndrome (FAS), has been the focus of much study, particularly involving cellular and molecular mechanisms. Few studies have addressed the influential role of altered cardiac function in early embryogenesis, due to a lack of tools with the capability to assay tiny beating hearts. To overcome this gap in our understanding, we used optical coherence tomography (OCT), a non-destructive imaging modality capable of micrometer-scale resolution imaging, to rapidly and accurately map cardiovascular structure and ...

      Read Full Article
    10. 4D shear stress maps of the developing heart using Doppler optical coherence tomography

      4D shear stress maps of the developing heart using Doppler optical coherence tomography

      Accurate imaging and measurement of hemodynamic forces is vital for investigating how physical forces acting on the embryonic heart are transduced and influence developmental pathways. Of particular importance is blood flow-induced shear stress, which influences gene expression by endothelial cells and potentially leads to congenital heart defects through abnormal heart looping, septation, and valvulogenesis. However no imaging tool has been available to measure shear stress on the endocardium volumetrically and dynamically. Using 4D structural and Doppler OCT imaging, we are able to accurately measure the blood flow in the heart tube in vivo and to map endocardial shear stress throughout ...

      Read Full Article
    11. Longitudinal Imaging of Heart Development With Optical Coherence Tomography

      Longitudinal Imaging of Heart Development With Optical Coherence Tomography

      Optical coherence tomography (OCT) has great potential for deciphering the role of mechanics in normal and abnormal heart development. OCT images tissue microstructure and blood flow deep into the tissue (1-2 mm) at high spatiotemporal resolutions allowing unprecedented images of the developing heart. Here, we review the advancement of OCT technology to image heart development and report some of our recent findings utilizing OCT imaging under environmental control for longitudinal imaging. Precise control of the environment is absolutely required in longitudinal studies that follow the growth of the embryo or studies comparing normal versus perturbed heart development to obtain meaningful ...

      Read Full Article
    12. Optical coherence tomography captures rapid hemodynamic responses to acute hypoxia of the embryonic cardiovascular system of Early Embryos

      Optical coherence tomography captures rapid hemodynamic responses to acute hypoxia of the embryonic cardiovascular system of Early Embryos

      Background.The trajectory to heart defects may start in tubular and looping heart stages when detailed analysis of form and function is difficult by currently available methods. We used a novel method, Doppler optical coherence tomography (OCT), to follow changes in cardiovascular function in quail embryos during acute hypoxic stress. Chronic fetal hypoxia is a known risk factor for congenital heart diseases (CHDs). Decreased fetal heart rates during maternal obstructive sleep apnea suggest that studying fetal heart responses under acute hypoxia is warranted.Results.We captured responses to hypoxia at the critical looping heart stages. Doppler OCT revealed detailed vitelline ...

      Read Full Article
    13. Optical Coherence Tomography Imaging of Early Quail Embryos

      Optical Coherence Tomography Imaging of Early Quail Embryos
      Congenital heart defects (CHDs) affect thousands of newborns each year in the United States. Recent research using animal model systems indicates that the abnormal function of the early tubular heart precedes structural defects such as septal defects. Optical coherence tomography (OCT) is an imaging modality that can provide high spatial and temporal resolution to study both the structure and the function of the tubular heart. With technical advances in OCT imaging speed, especially with frequency domain OCT and image-based retrospective gating, it is now possible to image a beating avian embryonic heart in three dimensions under physiological conditions and follow ...
      Read Full Article
    14. High-Speed Optical Coherence Tomography Imaging of the Beating Avian Embryonic Heart

      High-Speed Optical Coherence Tomography Imaging of the Beating Avian Embryonic Heart
      Congenital heart defects (CHDs) affect thousands of newborns each year in the United States. Recent research using animal model systems indicates that the abnormal function of the early tubular heart precedes structural defects such as septal defects. Optical coherence tomography (OCT) is an imaging modality that can provide high spatial and temporal resolution to study both the structure and the function of the tubular heart. With technical advances in OCT imaging speed, especially with frequency domain OCT and image-based retrospective gating, it is now possible to image a beating avian embryonic heart in three dimensions under physiological conditions and follow ...
      Read Full Article
    15. Blood Flow Dynamics of One Cardiac Cycle and Relationship to Mechanotransduction and Trabeculation during Heart Looping

      Blood Flow Dynamics of One Cardiac Cycle and Relationship to Mechanotransduction and Trabeculation during Heart Looping
      Analyses of form-function relationships during heart looping are directly related to technological advances. Recent advances in 4-D optical coherence tomography (OCT) permit observations of cardiac dynamics at high speed acquisition rates and high resolution. Real-time observation of the avian stage 13 looping heart reveals that interactions between the endocardial and myocardial compartments are more complex than previously depicted. Here we applied 4-D OCT to elucidate the relationships of the endocardium, myocardium, and cardiac jelly compartments in a single cardiac cycle during looping. Six cardiac levels along the longitudinal heart tube were each analyzed at 15 time points from diastole to ...
      Read Full Article
    16. Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography

      Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography

      Hemodynamics is thought to play a major role in heart development, yet tools to quantitatively assess hemodynamics in the embryo are sorely lacking. The especially challenging analysis of hemodynamics in the early embryo requires new technology. Small changes in blood flow could indicate when anomalies are initiated even before structural changes can be detected. Furthermore, small changes in the early embryo that affect blood flow could lead to profound abnormalities at later stages. We present a demonstration of 4-D Doppler optical coherence tomography (OCT) imaging of structure and flow, and present several new hemodynamic measurements on embryonic avian hearts at ...

      Read Full Article
    1-16 of 16
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (15 articles) Case Western Reserve University
    2. (1 articles) University of South Florida
    3. (1 articles) Massachusetts Institute of Technology
    4. (1 articles) American Heart Association
  3. Popular Articles

  4. Picture Gallery

    Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography Blood Flow Dynamics of One Cardiac Cycle and Relationship to Mechanotransduction and Trabeculation during Heart Looping High-Speed Optical Coherence Tomography Imaging of the Beating Avian Embryonic Heart Optical Coherence Tomography Imaging of Early Quail Embryos Optical coherence tomography captures rapid hemodynamic responses to acute hypoxia of the embryonic cardiovascular system of Early Embryos Longitudinal Imaging of Heart Development With Optical Coherence Tomography 4D shear stress maps of the developing heart using Doppler optical coherence tomography Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects? Capturing structure and function in an embryonic heart with biophotonic tools Feature Of The Week 02/22/15:  Case Western Reserve University Demostrates Using OCT to Rapidly Phenotype and Quantify Congenital Heart Defects Associated with Prenatal Alcohol Exposure Vascular and Structural Alterations of the Choroid Evaluated by Optical Coherence Tomography Angiography and Enhanced-Depth Imaging Optical Coherence Tomography in Eyes with Reticular Pseudodrusen and Soft Drusen Total venous nature of retinal deep capillary plexus inferred by continuity of prominent middle limiting membrane sign in optical coherence tomography