1. Articles from Yali Jia

    1-24 of 108 1 2 3 4 5 »
    1. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography

      Split-spectrum amplitude-decorrelation angiography with optical coherence tomography

      Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head ...

      Read Full Article
    2. Sensorless adaptive-optics optical coherence tomographic angiography

      Sensorless adaptive-optics optical coherence tomographic angiography

      Optical coherence tomographic angiography (OCTA) can image the retinal blood flow but visualization of the capillary caliber is limited by the low lateral resolution. Adaptive optics (AO) can be used to compensate ocular aberrations when using high numerical aperture (NA), and thus improve image resolution. However, previously reported AO-OCTA instruments were large and complex, and have a small sub-millimeter field of view (FOV) that hinders the extraction of biomarkers with clinical relevance. In this manuscript, we developed a sensorless AO-OCTA prototype with an intermediate numerical aperture to produce depth-resolved angiograms with high resolution and signal-to-noise ratio over a 2 × 2 ...

      Read Full Article
    3. Automated segmentation of retinal fluid volumes from structural and angiographic optical coherence tomography using deep learning

      Automated segmentation of retinal fluid volumes from structural and angiographic optical coherence tomography using deep learning

      Purpose: We proposed a deep convolutional neural network (CNN), named Retinal Fluid Segmentation Network (ReF-Net) to segment volumetric retinal fluid on optical coherence tomography (OCT) volume. Methods: 3 × 3-mm OCT scans were acquired on one eye by a 70-kHz OCT commercial AngioVue system (RTVue-XR; Optovue, Inc.) from 51 participants in a clinical diabetic retinopathy (DR) study (45 with retinal edema and 6 healthy controls). A CNN with U-Net-like architecture was constructed to detect and segment the retinal fluid. Cross-sectional OCT and angiography (OCTA) scans were used for training and testing ReF-Net. The effect of including OCTA data for retinal fluid ...

      Read Full Article
    4. Retinal capillary oximetry with visible light optical coherence tomography

      Retinal capillary oximetry with visible light optical coherence tomography

      Assessing oxygen saturation (sO 2 ) remains challenging but is nonetheless necessary for understanding retinal metabolism. We and others previously achieved oximetry on major retinal vessels and measured the total retinal oxygen metabolic rate in rats using visible-light optical coherence tomography. Here we extend oximetry measurements to capillaries and investigate all three retinal vascular plexuses by amplifying and extracting the spectroscopic signal from each capillary segment under the guidance of optical coherence tomography (OCT) angiography. Using this approach, we measured capillary sO 2 in the retinal circulation in rats, demonstrated reproducibility of the results, validated the measurements in superficial capillaries with ...

      Read Full Article
    5. Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography

      Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography

      Sensorless adaptive optics optical coherence tomography (AO-OCT) is a technology to image retinal tissue with high resolution by compensating ocular aberrations without wavefront sensors. In this Letter, a fast and robust hill-climbing algorithm is developed to optimize five Zernike modes in AO-OCT with a numerical aperture between that of conventional AO and commercial OCT systems. The merit function is generated in real time using graphics processing unit while axially tracking the retinal layer of interest. A new method is proposed to estimate the largest achievable field of view for which aberrations are corrected uniformly in sensorless AO-OCT.

      Read Full Article
    6. Optical coherence tomography angiography avascular area association with one-year treatment requirement and disease progression in diabetic retinopathy

      Optical coherence tomography angiography avascular area association with one-year treatment requirement and disease progression in diabetic retinopathy

      Purpose To assess the association between optical coherence tomography angiography (OCTA) quantified avascular areas (AA) and diabetic retinopathy (DR) severity, progression and treatment requirement in the following year. Design Prospective cohort study. Methods We recruited diabetic patients from tertiary academic retina practice and obtained 3x3-mm macular OCTA scans with AngioVue system and standard 7-field color photographs at baseline and 1-year visit. A masked grader determined the DR severity from the color photographs using the Early Treatment of Diabetic Retinopathy (ETDRS) scale. A custom algorithm detected extrafoveal AA (EAA) excluding the central 1mm circle in projection-resolved superficial vascular complex (SVC), intermediate ...

      Read Full Article
    7. Systems and methods to remove shadowgraphic flow projections on OCT angiography

      Systems and methods to remove shadowgraphic flow projections on OCT angiography

      Methods and systems for suppressing shadowgraphic flow projection artifacts in OCT angiography images of a sample are disclosed. In one example approach, normalized OCT angiography data is analyzed at the level of individual A-scans to classify signals as either flow or projection artifact. This classification information is then used to suppress projection artifacts in the three dimensional OCT angiography dataset.

      Read Full Article
    8. Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography

      Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography

      In vivo high-resolution images are the most direct way to understand retinal function and diseases. Here we report the use of visible-light optical coherence tomography with volumetric registration and averaging to achieve cellular-level retinal structural imaging in a rat eye, covering the entire depth of the retina. Vitreous fibers, nerve fiber bundles, and vasculature were clearly revealed, as well as at least three laminar sublayers in the inner plexiform layer. We also successfully visualized ganglion cell somas in the ganglion cell layer, cells in the inner nuclear layer, and photoreceptors in the outer nuclear layer and ellipsoid zone. This technique ...

      Read Full Article
    9. Application of Corneal Optical Coherence Tomography Angiography for Assessment of Vessel Depth in Corneal Neovascularization

      Application of Corneal Optical Coherence Tomography Angiography for Assessment of Vessel Depth in Corneal Neovascularization

      Purpose: To map and measure the depths of corneal neovascularization (NV) using 3-dimensional optical coherence tomography angiography (OCTA) at 2 different wavelengths. Methods: Corneal NV of varying severity, distribution, and underlying etiology was examined. Average NV depth and vessel density were measured using 840-nm spectral-domain OCTA and 1050-nm swept-source OCTA. The OCTA results were compared with clinical slit-lamp estimation of NV depth. Results: Twelve eyes with corneal NV from 12 patients were imaged with OCTA. Clinically “superficial,” “midstromal,” and “deep” cases had an average vessel depth of 23%, 39%, and 66% on 1050-nm OCTA, respectively. Average vessel depth on OCTA ...

      Read Full Article
    10. Sectorwise Visual Field Simulation Using Optical Coherence Tomographic Angiography Nerve Fiber Layer Plexus Measurements in Glaucoma

      Sectorwise Visual Field Simulation Using Optical Coherence Tomographic Angiography Nerve Fiber Layer Plexus Measurements in Glaucoma

      Purpose To simulate 24-2 visual field (VF) using optical coherence tomographic angiography (OCTA) for glaucoma evaluation. Design Cross-sectional study. Methods One eye each of 39 glaucoma and 31 age-matched normal participants was scanned using 4.5-mm OCTA scans centered on the disc. The peripapillary retinal nerve fiber layer plexus capillary density (NFLP_CD, %area) was measured. The NFLP_CD and 24-2 VF maps were divided into 8 corresponding sectors using an extension of Garway-Heath scheme. Results Sector NFLP_CD was transformed to a logarithmic dB scale and converted to sector simulated VF deviation maps. Comparing simulated and actual 24-2 VF maps, the worst ...

      Read Full Article
    11. Quantification of local circulation with OCT angiography

      Quantification of local circulation with OCT angiography

      Impaired intraocular blood flow within vascular beds in the human eye is associated with certain ocular diseases including, for example, glaucoma, diabetic retinopathy and age-related macular degeneration. A reliable method to quantify blood flow in the various intraocular vascular beds could provide insight into the vascular component of ocular disease pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) was developed for imaging microcirculation within different intraocular regions. A method to quantify SSADA results was developed and used to detect perfusion changes in early stage ocular disease. Associated embodiments relating to methods ...

      Read Full Article
    12. Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina using Optical Coherence Tomographic Angiography

      Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina using Optical Coherence Tomographic Angiography

      Purpose To measure low perfusion areas (LPA) and focal perfusion loss (FPL) in the peripapillary retina using optical coherence tomographic angiography (OCTA) in glaucoma. Design Prospective observation study. Participants Forty-seven primary open angle glaucoma (POAG) patients and 36 normal subjects were analyzed. Methods One eye of each subject was scanned using AngioVue 4.5-mm OCTA scan centered on the disc. En face nerve fiber layer plexus angiogram was generated. Using custom software, capillary density map was obtained by computing the fraction of area occupied by flow pixels within each superpixel containing 21×21-pixels. The low-perfusion map is defined by local ...

      Read Full Article
    13. Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration

      Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration

      Age-related macular degeneration (AMD) is a vision-threatening disease that affects the outer retina and choroid of elderly adults. Because photoreceptors are found in the outer retina and rely primarily on the trophic support of the underlying choriocapillaris, imaging of flow or lack thereof in choriocapillaris by optical coherence tomography angiography (OCTA) has great clinical potential in AMD assessment. We introduce a metric using OCTA, named “focal perfusion loss” (FPL) to describe the effects of age and non-neovascular AMD on choriocapillaris flow. Because OCTA imaging of choriocapillaris is vulnerable to artifacts—namely motion, projections, segmentation errors, and shadows—they are removed ...

      Read Full Article
    14. Detection of reduced retinal vessel density in eyes with geographic atrophy secondary to age-related macular degeneration using projection-resolved optical coherence tomography angiography

      Detection of reduced retinal vessel density in eyes with geographic atrophy secondary to age-related macular degeneration using projection-resolved optical coherence tomography angiography

      Purpose To compare retinal vessel density in eyes with geographic atrophy (GA) secondary to age-related macular degeneration (AMD) to age-matched healthy eyes using projection-resolved optical coherence tomography angiography (PR-OCTA). Design Prospective cross-sectional study. Methods Study participants underwent macular 3×3-mm OCTA scans with spectral domain OCTA. Reflectance-compensated retinal vessel densities were calculated on projection-resolved superficial vascular complex (SVC), intermediate capillary plexus (ICP), and deep capillary plexus (DCP). Quantitative analysis using normalized deviation compared the retinal vessel density in GA regions, 500 μm GA rim regions, and non-GA regions to similar macular locations in control eyes. Results Ten eyes with GA ...

      Read Full Article
    15. Automated segmentation of peripapillary retinal boundaries in OCT combining a convolutional neural network and a multi-weights graph search

      Automated segmentation of peripapillary retinal boundaries in OCT combining a convolutional neural network and a multi-weights graph search

      Quantitative analysis of the peripapillary retinal layers and capillary plexuses from optical coherence tomography (OCT) and OCT angiography images depend on two segmentation tasks – delineating the boundary of the optic disc and delineating the boundaries between retinal layers. Here, we present a method combining a neural network and graph search to perform these two tasks. A comparison of this novel method’s segmentation of the disc boundary showed good agreement with the ground truth, achieving an overall Dice similarity coefficient of 0.91 ± 0.04 in healthy and glaucomatous eyes. The absolute error of retinal layer boundaries segmentation in the ...

      Read Full Article
    16. Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography

      Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography

      Elevated intraocular pressure (IOP) is an important risk factor for glaucoma. However, the role of IOP in glaucoma progression, as well as retinal physiology in general, remains incompletely understood. We demonstrate the use of visible light optical coherence tomography to measure retinal responses to acute IOP elevation in Brown Norway rats. We monitored retinal responses in reflectivity, angiography, blood flow, oxygen saturation (sO2 ), and oxygen metabolism over a range of IOP from 10 to 100 mmHg. As IOP was elevated, nerve fiber layer reflectivity was found to decrease. Vascular perfusion in the three retinal capillary plexuses remained steady until IOP ...

      Read Full Article
    17. High dynamic range optical coherence tomography angiography (HDR-OCTA)

      High dynamic range optical coherence tomography angiography (HDR-OCTA)

      The dynamic range of current optical coherence tomography (OCT) angiography (OCTA) images is limited by the fixed scanning intervals. High speed OCT devices introduce the possibility of extending the flow signal dynamic range. In this study, we created a novel scanning pattern for achieving high dynamic range (HDR)-OCTA with a superior scanning efficiency. We implemented a bidirectional, interleaved scanning pattern that is sensitive to different flow speeds by adjustable adjacent inter-scan time intervals. We found that an improved flow dynamic range can be achieved by generating 3 different B-scan time intervals using 3 repetitions.

      Read Full Article
    18. Systems and methods to compensate for reflectance variation in OCT angiography

      Systems and methods to compensate for reflectance variation in OCT angiography

      Methods and systems for improving quantification of OCT angiography data are disclosed. The disclosure specifically relates to methods for compensating for the effect of tissue reflectance to improve the accuracy and repeatability of OCT angiography measurements. These improvements are effected by deriving and then utilizing a dynamic thresholding approach to process decorrelation data to properly classify flow versus non-flow data in OCT angiograms. The disclosed methods overcome quantification errors associated with within-scan variations in reflectance as well as repeatability problems associated with differences in scan quality over successive imaging sessions.

      Read Full Article
    19. Correlation of Outer Retinal Degeneration and Choriocapillaris Loss in Stargardt Disease Using En Face Optical Coherence Tomography and Optical Coherence Tomography Angiography

      Correlation of Outer Retinal Degeneration and Choriocapillaris Loss in Stargardt Disease Using En Face Optical Coherence Tomography and Optical Coherence Tomography Angiography

      Purpose This study measured and correlated degeneration of the junction between the inner and outer segments (IS/OS), the retinal pigment epithelium (RPE), and the choriocapillaris (CC) in Stargardt disease (STGD). Design Prospective cross-sectional study. Methods This study was conducted at the Casey Eye Institute. A total of 23 patients with STGD were enrolled and underwent optical coherence tomography angiography (OCTA). Scans were centered on the fovea. OCT slab projections and en face boundary maps were used to create masks to measure total IS/OS loss or RPE atrophy as well as regions of isolated IS/OS loss, isolated RPE ...

      Read Full Article
    20. Signal strength reduction effects in optical coherence tomographic angiography

      Signal strength reduction effects in optical coherence tomographic angiography

      Objective To elucidate the relationship between vessel density (VD) measurements and signal strength in optical coherence tomography angiography (OCTA). Design Cross-sectional study. Subjects: Healthy volunteers. Methods OCTA images obtained from healthy volunteers were analyzed to demonstrate the relationship between signal strength index (SSI) and VD. Experiments were performed to determine the effects of signal strength reduction on VD measurements on the Optovue/AngioVue and Cirrus/AngioPlex OCTA systems. Signal strength reduction was generated by either neutral density filters (NDF) or defocus. Main Outcome Measures Regression analysis of signal strength effects on VD. Results VD decreased linearly with signal strength with ...

      Read Full Article
    21. Maximum value projection produces better en face OCT angiograms than mean value projection

      Maximum value projection produces better en face OCT angiograms than mean value projection

      Optical coherence tomography angiography (OCTA) images rely on en face data projections for both qualitative and quantitative interpretation. Both maximum value and mean value projections are commonly used, and many researchers consider them essentially interchangeable approaches. On the contrary, we find that maximum value projection achieves a consistently higher signal-to-noise ratio and higher image contrast across multiple vascular layers, in both healthy eyes and for each disease examined.

      Read Full Article
    22. Systems and methods for automated segmentation of retinal fluid in optical coherence tomography

      Systems and methods for automated segmentation of retinal fluid in optical coherence tomography

      Disclosed herein are methods and systems for the identification and characterization of fluid accumulation in the retina using OCT imaging. The disclosed methods and systems are directed to the automated segmentation of retinal fluid using 2D or 3D structural OCT scan images. Approaches for visualization and quantification of both intraretinal and subretinal fluid are presented. Methods are also disclosed for using OCT angiography data to improve the quality of retinal fluid segmentation, and to provide combined visualization of fluid accumulation and retinal vasculature to inform clinical interpretation of results.

      Read Full Article
    23. Detection of Non-exudative Choroidal Neovascularization and Progression to Exudative Choroidal Neovascularization Using Optical Coherence Tomography Angiography

      Detection of Non-exudative Choroidal Neovascularization and Progression to Exudative Choroidal Neovascularization Using Optical Coherence Tomography Angiography

      Objective To detect non-exudative choroidal neovascularization (CNV) in age-related macular degeneration with optical coherence tomography angiography (OCTA) and determine risk of developing exudative CNV compared to eyes without non-exudative CNV. Design Prospective longitudinal observational study Participants Consecutive patients with drusen and pigmentary changes in the study eye and exudative neovascular AMD in the fellow eye. Methods Study participants underwent spectral domain OCTA (AngioVue, Optovue, Inc), clinical exam, and structural OCT at baseline and six-month intervals for two years. OCTA images were exported for custom processing to remove projection artifact and calculate CNV vessel area. Main Outcome Rate of developing exudation ...

      Read Full Article
    1-24 of 108 1 2 3 4 5 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (106 articles) Yali Jia
    2. (105 articles) Oregon Health & Science University
    3. (91 articles) David Huang
    4. (85 articles) Center for Ophthalmic Optics and Lasers
    5. (22 articles) Steven T. Bailey
    6. (13 articles) Massachusetts Institute of Technology
    7. (12 articles) James G. Fujimoto
    8. (11 articles) Christina J. Flaxel
    9. (11 articles) Ou Tan
    10. (10 articles) Gangjun Liu
    11. (1 articles) British Columbia Cancer Agency
    12. (1 articles) Shanghai Jiao Tong University
    13. (1 articles) Singapore Eye Research Institute
    14. (1 articles) Simon Fraser University
    15. (1 articles) Tien Yin Wong
    16. (1 articles) Stephen Lam
    17. (1 articles) Pierre M. Lane
    18. (1 articles) Julia Welzel
    19. (1 articles) Giuseppe Querques
    20. (1 articles) Francesco Bandello
  3. Popular Articles

  4. Picture Gallery

    Doppler optical microangiography improves the quantification of local fluid flow and shear stress within 3-D porous constructs The study of effects of pore architecture in chitosan scaffolds on the fluid flow pattern by Doppler OCT High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice Split-spectrum amplitude-decorrelation angiography with optical coherence tomography Clinical OCT Angiography Atlas (Textbook) Post-doctoral fellowship in Optical Coherence Tomography at Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA Line-field confocal optical coherence tomography-Practical applications in dermatology and comparison with established imaging methods Optical coherence tomography detection of changes in inner retinal and choroidal thicknesses in patients with early retinitis pigmentosa Feasibility of combined optical coherence tomography and autofluorescence imaging for visualization of needle biopsy placement Characterization of microvascular tortuosity in retinal vein occlusion utilizing optical coherence tomography angiography